已知x1、x2是函數(shù)f(x)=
1
3
x2+
1
2
ax2+2bx(a,b∈R)的兩個極值點,且x1∈(0,1),x2∈(1,2),則4a+3b的取值范圍是(  )
A、(-9,-4)
B、(-8,-4)
C、(-9,-8)
D、(-15,-4)
考點:利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:求導(dǎo)函數(shù),利用f(x)的兩個極值點分別是x1,x2,x1∈(0,1),x2∈(1,2),建立不等式,利用平面區(qū)域,即可求4a+3b的取值范圍.
解答: 解:由題意,f′(x)=x2+ax+2b.
∵f(x)的兩個極值點分別是x1,x2,x1∈(0,1),
x2∈(1,2),
f′(0)=2b>0
f′(1)=1+a+2b<0
f′(2)=4+2a+2b>0

對應(yīng)的平面區(qū)域如圖所示,三個頂點坐標(biāo)為A(-1,0),
B(-2,0),C(-3,1),則
在(-1,0)處,4a+3b=-4,在(-3,1)處,4a+3b=-9,
∴4a+3b的取值范圍是(-9,-4).
故選A.
點評:本題考查導(dǎo)數(shù)知識的運用:求極值,考查平面區(qū)域的運用,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是拋物線y2=2x上的一個動點,過點P作圓(x-3)2+y2=1的一條切線,切點為M,則|PM|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在線段[0,3]上任取一點,其坐標(biāo)小于1的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-mx(e為自然對數(shù)的底數(shù)),其圖象在點(0,f(0))處的切線垂直于y軸.
(Ⅰ)求f(x)的最小值;
(Ⅱ)設(shè)不等式f(x)≥ax+1的解集為P,且{x|0≤x≤2}⊆P,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四面體P-ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=2
34
,F(xiàn)是線段PB上一點,CF=
15
17
34
,點E在線段AB上,且EF⊥PB.
(1)證明:PB⊥平面CEF;
(2)求二面角B-CE-F的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù),若對于x≥0都有f(x+2)=-f(x),且當(dāng)x∈[0,2)時,f(x)=log8(x+1),則f(-2013)+f(2014)=( 。
A、0
B、
1
3
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
(
1
2
)x-1,-1≤x≤0
x2,0<x≤2
,若方程f(x)=x+a恰有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是( 。
A、[-1,
1
4
)
B、[-1,
1
4
]
C、[-
1
4
,2]
D、(-
1
4
,2]

第Ⅱ卷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2,當(dāng)x=1時,f(x)有極大值1.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-
1
2
,2]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x≥1
y≥x
3x+2y≤15
,則z=7x+2y的最大值是( 。
A、27B、19C、13D、9

查看答案和解析>>

同步練習(xí)冊答案