10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+6,x≥0}\\{x+6,x<0}\end{array}\right.$,則不等式f(x)≤f(1)的解集是( 。
A.[-3,1]∪[3,+∞)B.[-3,1]∪[2,+∞)C.[-1,1]∪[3,+∞)D.(-∞,-3]∪[1,3]

分析 分類(lèi)討論解出即可.

解答 解:①當(dāng)x≥0時(shí),由不等式f(x)≤f(1),可得x2-4x+6≤3,解得1≤x≤3
②當(dāng)x<0時(shí),由f(x)≤f(1),可得x+6≤3,解得x≤-3.
綜上可知:不等式f(x)<f(1)的解集是(-∞,-3]∪[1,3].
故選:D.

點(diǎn)評(píng) 熟練掌握分類(lèi)討論的思想方法、一元二次不等式和一元一次不等式的解法等是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x2+ax在x=0與x=1處的切線(xiàn)互相垂直.
(1)若函數(shù)g(x)=f(x)+$\frac{2}$lnx-bx在(0,+∞)上單調(diào)遞增,求a,b的值;
(2)設(shè)函數(shù)h(x)=$\left\{\begin{array}{l}lnx,x>0\\ f(x+1),x≤0\end{array}$,若方程h(x)-kx=0有四個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=3,S5=25,則a8=( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知全集U={-2,-1,0,1,2,3},M={-1,0,1,3},N={-2,0,2,3},則(∁UM)∩N為{-2,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,$\overrightarrow a$•$\overrightarrow b$=-1,則$\overrightarrow a$,$\overrightarrow b$的夾角大小為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.用列舉法表示小于10的所有自然數(shù)組成的集合{0,1,2,3,4,5,6,7,8,9}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{1}{2}{x}^{2},x≤1}\\{f(x-2)+\frac{1}{2},x>1}\end{array}\right.$若方程f(x)=a|x-1|,(a∈R)有且僅有兩個(gè)不相等的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是a≤0或a=3-$\sqrt{7}$或$\frac{1}{8}≤a<\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=|2x-1|.求不等式f(x)<2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=3x+λ•3-x(λ∈R).
(1)當(dāng)λ=1時(shí),試判斷函數(shù)f(x)=3x+λ•3-x的奇偶性,并證明你的結(jié)論;
(2)若不等式f(x)≤6在x∈[0,2]上恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案