精英家教網 > 高中數學 > 題目詳情

某城市隨機抽取一年(365天)內100天的空氣質量指數API的監(jiān)測數據,結果統(tǒng)計如下:

API
 

 

 

 

 

 

 

 
空氣質量
 
優(yōu)
 

 
輕微污染
 
輕度污染
 
中度污染
 
中重度污染
 
重度污染
 
天數
 
4
 
13
 
18
 
30
 
9
 
11
 
15
 
(1)若某企業(yè)每天由空氣污染造成的經濟損失S(單位:元)與空氣質量指數API(記為w)的關系為:
,試估計在本年度內隨機抽取一天,該天經濟損失S大于200元且不超過600元的概率;
(2)若本次抽取的樣本數據有30天是在供暖季,其中有8天為重度污染完成下面列聯(lián)表,并判斷能否有的把握認為該市本年空氣重度污染與供暖有關?
附:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
非重度污染
 
重度污染
 
合計
 
供暖季
 
 
 
 
 
 
 
非供暖季
 
 
 
 
 
 
 
合計
 
 
 
 
 
100
 

(1);(2)有95%的把握認為空氣重度污染與供暖有關

解析試題分析:(1)根據所給數據,求出經濟損失S大于200元且不超過600元的天數的頻率,以此頻率作為“在本年內隨機抽取一天,該天經濟損失S大于200元且不超過600元”的概率(估計)
(2)由于總共有15天為重度污染,其中有8天在供暖季,那么有7天在非供暖季;在30天供暖季中有8天為重度污染,那么有22天為非重度污染;非重度污染有85天其中有22天在供暖季,那么有63天在非供暖季,由此可完成列聯(lián)表:

 
非重度污染
重度污染
合計
供暖季
22
8
30
非供暖季
63
7
70
合計
85
15
100
代入公式即可求得K2的觀測值,從而確定是否有95%的把握認為空氣重度污染與供暖有關
試題解析:(Ⅰ)設“在本年內隨機抽取一天,該天經濟損失S大于200元且不超過600元”為事件A
1分
,得,頻數為39,                    3分
所以                                               4分
(Ⅱ)根據以上數據得到如下列聯(lián)表:
 
非重度污染
重度污染
合計
供暖季
22
8
30
非供暖季
63
7
70
合計
85
15
100
8分
K2的觀測值         10分
所以有95%的把握認為空氣重度污染與供暖有關                 12分
考點:1、概率與統(tǒng)計;2、函數的應用

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某地區(qū)有小學21所,中學14所,大學7所,現采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查.
(1)求應從小學、中學、大學中分別抽取的學校數目;
(2)若從抽取的6所學校中隨機抽取2所學校做進一步數據分析,
①列出所有可能的抽取結果;
②求抽取的2所學校均為小學的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

衡水某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規(guī)教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數學應用題上的得分率基本一致,試驗結束后,統(tǒng)計幾次數學應用題測試的平均成績(均取整數)如下表所示:

 
60分
以下
61~
70分
71~
80分
81~
90分
91~
100分
甲班
(人數)
3
6
11
18
12
乙班
(人數)
4
8
13
15
10
現規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(1)試分別估計兩個班級的優(yōu)秀率.
(2)由以上統(tǒng)計數據填寫下面2×2列聯(lián)表,并判斷“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率”是否有幫助?
 
優(yōu)秀人數
非優(yōu)秀人數
總計
甲班
 
 
 
乙班
 
 
 
總計
 
 
 
參考公式及數據:K2=,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩位學生參加數學競賽培訓.現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數據.
(2)現要從中選派一人參加數學競賽,從穩(wěn)定性的角度考慮,你認為選派哪位學生參加合適?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數的莖葉圖如圖所示,其中莖為十位數,葉為個位數.

(1)根據莖葉圖計算樣本均值.
(2)日加工零件個數大于樣本均值的工人為優(yōu)秀工人.根據莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在某次數學考試中,抽查了1000名學生的成績,得到頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.

(1)下表是這次抽查成績的頻數分布表,試求正整數的值;

區(qū)間
[75,80)
[80,85)
[85,90)
[90,95)
[95,100]
人數
50
a
350
300
b
(2)現在要用分層抽樣的方法從這1000人中抽取40人的成績進行分析,求抽取成績?yōu)閮?yōu)秀的學生人數;
(3)在根據(2)抽取的40名學生中,要隨機選取2名學生參加座談會,記其中成績?yōu)閮?yōu)秀的人數為X,求X的分布列與數學期望(即均值).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數的莖葉圖如圖所示,其中莖為十位數,葉為個位數.

(1)根據莖葉圖計算樣本均值;
(2)日加工零件個數大于樣本均值的工人為優(yōu)秀工人.根據莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2013年某市某區(qū)高考文科數學成績抽樣統(tǒng)計如下表:
(1)求出表中m、n、M、N的值,并根據表中所給數據在下面給出的坐標系中畫出頻率分布直方圖;(縱坐標保留了小數點后四位小數)

(2)若2013年北京市高考文科考生共有20000人,試估計全市文科數學成績在90分及90分以上的人數;
(3)香港某大學對內地進行自主招生,在參加面試的學生中,有7名學生數學成績在140分以上,其中男生有4名,要從7名學生中錄取2名學生,求其中恰有1名女生被錄取的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某學校的三個學生社團的人數分布如下表(每名學生只能參加一個社團):

 
圍棋社
舞蹈社
拳擊社
男生
5
10
28
女生
15
30
m
學校要對這三個社團的活動效果進行抽樣調查,按分層抽樣的方法從三個社團成員中抽取18人,結果拳擊社被抽出了6人.
(Ⅰ)求拳擊社女生有多少人;
(Ⅱ)從圍棋社指定的3名男生和2名女生中隨機選出2人參加圍棋比賽,求這兩名同學是一名男生和一名女生的概率.

查看答案和解析>>

同步練習冊答案