20、   已知定義在R上的函數(shù)和數(shù)列滿足下列條件:,

,其中a為常數(shù),k為非零常數(shù).

(Ⅰ)令,證明數(shù)列是等比數(shù)列;

(Ⅱ)求數(shù)列的通項(xiàng)公式;

(Ⅲ)當(dāng)時(shí),求.

 

【答案】

(Ⅰ)證明:見解析;

(Ⅱ)數(shù)列的通項(xiàng)公式為   

(Ⅲ)當(dāng)時(shí), 

【解析】本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.

(1)由題意知an=f(an-1),f(an)-f(an-1)=k(an-an-1)(n=2,3,4,),得an+1-an=f(an)-f(an-1)=k(an-an-1)(n=2,3,4,),由此可知an-an-1=k(an-an-1),(n=2,3,4,),得k=1.

(2)由b1=a2-a1≠0,知b2=a3-a2=f(a2)-f(a1)=k(a2-a1)≠0.因此bn=an+1-an=f(an)-f(an-1)=k(an-an-1)═kn-1a2-a1)≠0,由此可知數(shù)列{bn}是一個(gè)公比為k的等比數(shù)列.

(3){an}是等比數(shù)列的充要條件是f(x)=kx(k≠1);先進(jìn)行充分性證明:若f(x)=kx(k≠1),則{an}是等比數(shù)列.再進(jìn)行必要性證明:若{an}是等比數(shù)列,f(x)=kx(k≠1).

(Ⅰ)證明:由,可得

.由數(shù)學(xué)歸納法可證

.

 由題設(shè)條件,當(dāng)時(shí)

因此,數(shù)列是一個(gè)公比為k的等比數(shù)列.

(Ⅱ)解:由(1)知,

當(dāng)時(shí),

當(dāng)時(shí),    .

  

所以,當(dāng)時(shí),      .上式對(duì)也成立. 所以,數(shù)列的通項(xiàng)公式為. 當(dāng)時(shí)

    。上式對(duì)也成立,所以,數(shù)列的通項(xiàng)公式為    ,

(Ⅲ)解:當(dāng)時(shí), 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函f(x)的圖象關(guān)于點(diǎn)(-
3
4
,0
)對(duì)稱,且滿足f(x)=-f(x+
3
2
),f(0)=2,f(1)=-1,則f(1)+f(2)+f(3)+…+f(2009)的值是( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤
π2
時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x).當(dāng)x<0時(shí),f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問:是否存在實(shí)數(shù)a,b(a≠b),使f(x)在x∈[a,b]時(shí),函數(shù)值的集合為[
1
b
,
1
a
]
?若存在,求出a,b;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省杭州高級(jí)中學(xué)高三第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知定義在R上的函f(x)的圖象關(guān)于點(diǎn)()對(duì)稱,且滿足f(x)=-f(x+),f(0)=2,f(1)=-1,則f(1)+f(2)+f(3)+…+f(2009)的值是( )
A.1
B.-1
C.2
D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省宜賓市南溪一中高考數(shù)學(xué)一診模擬試卷1(文科)(解析版) 題型:選擇題

已知定義在R上的函f(x)的圖象關(guān)于點(diǎn)()對(duì)稱,且滿足f(x)=-f(x+),f(0)=2,f(1)=-1,則f(1)+f(2)+f(3)+…+f(2009)的值是( )
A.1
B.-1
C.2
D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案