已知函數(shù)y=f(x)在[0,5)上為增函數(shù)且f(4-3m)>f(m),求m的值.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)在[0,5)上為增函數(shù),可得
0≤4-3m<5
0≤m<5
4-3m>m
,解不等式組即可求出m的取值范圍.
解答: 解:由已知條件得:
0≤4-3m<5
0≤m<5
4-3m>m
,解得0≤m<1;
∴m的取值范圍為[0,1).
點(diǎn)評:考查單調(diào)增函數(shù)的定義以及根據(jù)單調(diào)性的定義解不等式,及函數(shù)的定義域.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=exu(x),
(Ⅰ)若u(x)=x2-
5
2
x+2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若u(x)=x2+ax-3-2a,設(shè)函數(shù)g(x)=(a2+14)ex+4.當(dāng)a>0時,分別求出f(x)和g(x)在x∈[0,4]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=
2
5

(1)求a,b的值;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)已知f(t)+f(t-1)<0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
x+1
x-3
≤0},B={x|2x-4≥x-2},
(1)求A∩B;
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△OAB中,
OA
=
e1
,
OB
=
e2
,M,N分別在OA,OB上,且
OM
=
1
3
e1
ON
=
1
2
e2
,AN與BM的交點(diǎn)為P,試用
e1
,
e2
表示
OP 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程:x4-2ax2-x+a2-a=0(-0.25≤a<0.75).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=(a2-7a+6)+(a2-5a-6)i,(a∈R)
(1)當(dāng)a為何值時,z是實數(shù);
(2)當(dāng)a為何值時,z是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=
x2-4x+5
x-1
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=-3,則
sinα-cosα
sinα+cosα
的值為
 

查看答案和解析>>

同步練習(xí)冊答案