三棱錐S-ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結論中:
①異面直線SB與AC所成的角為90°; 
②直線SB⊥平面ABC; 
③面SBC⊥面SAC; 
④點C到平面SAB的距離是
其中正確結論的序號是   
【答案】分析:由題目中的條件可以證得,三棱錐的一個側棱SB⊥平面ABC,面SBC⊥AC,由此易判斷得①②③④都是正確的
解答:解:由題意三棱錐S-ABC中,∠SBA=∠SCA=90°,知SB⊥BA,SC⊥CA,
又△ABC是斜邊AB=a的等腰直角三角形可得AC⊥BC,又BC∩SB=B,故有AC⊥面SBC,故有SB⊥AC,故①正確,
由此可以得到SB⊥平面ABC,故②正確,
再有AC?面SAC得面SBC⊥面SAC,故③正確,
△ABC是斜邊AB=a的等腰直角三角形,點C到平面SAB的距離即點C到斜邊AB的中點的距離,即,故④正確.
故答案為①②③④
點評:本題考查了異面直線所成的角,線面垂直,面面垂直以及點到面的距離的求法,本題涉及到了立體幾何中多個重要位置關系與典型問題的求法,綜合性強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖在三棱錐S-ABC中∠ACB=90°,SA⊥面ABC,AC=2,BC=
13
SB=
29

(1)證明SC⊥BC.
(2)求側面SBC與底面ABC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,SC⊥平面ABC,點P、M分別是SC和SB的中點,設PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°.
(1)求證:平面MAP⊥平面SAC.
(2)求二面角M-AC-B的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M,N分別為AB,SB的中點.
(1)證明:AC⊥SB;
(2)求二面角N-CM-B的大;
(3)求點B到平面CMN的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐S-ABC中,△ABC是邊長為8的正三角形,SA=SC=2
7
,二面角S-AC-B的大小為60°
(1)求證:AC⊥SB;
(2)求三棱錐S-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O為BC中點.
(Ⅰ)求點B到平面SAC的距離;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

同步練習冊答案