將函數(shù)y=2sin(2x-θ)-3的圖象F按向量a=(
π
6
,3)
平移得到圖象F′,若F′的解析式為y=2sin2x,則θ的一個(gè)可能取值是( 。
A.
π
3
B.-
π
3
C.
π
2
D.-
π
6
設(shè)P(x,y)是圖象F′上的任意一點(diǎn).
則按向量平移前的相應(yīng)的點(diǎn)Q(x0,y0)在圖象F上,且
x=x0+
π
6
y=y0+3

把(x0,y0)代入y=2sin(2x-θ)-3得y-3=2sin[2(x-
π
6
)-θ]-3

整理得y=2sin(2x-
π
3
)即F′的解析式.
∴-
π
3
=2kπ,k∈Z 當(dāng).k=0,θ=-
π
3

故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)=cosx-sinx把y=f(x)的圖象按向量
a
=(φ,0)(φ>0)平移后,恰好得到函數(shù)y=f′(x)的圖象,則φ的值可以為(  )
A.
π
2
B.
4
C.πD.
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)y=sinx的圖象向右平移
π
2
個(gè)單位長度,再向上平移1個(gè)單位長度,所得的圖象對(duì)應(yīng)的函數(shù)解析式為( 。
A.y=1-sinxB.y=1+sinxC.y=1-cosxD.y=1+cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)是偶函數(shù),則a=          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于定義在區(qū)間D上的函數(shù)f(X),若存在閉區(qū)間[a,b]?D和常數(shù)c,使得對(duì)任意x1∈[a,b],都有f(x1)=c,且對(duì)任意x2∈D,當(dāng)x2∉[a,b]時(shí),f(x2)<c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平頂型”函數(shù).給出下列說法:
①“平頂型”函數(shù)在定義域內(nèi)有最大值;
②函數(shù)f(x)=x-|x-2|為R上的“平頂型”函數(shù);
③函數(shù)f(x)=sinx-|sinx|為R上的“平頂型”函數(shù);
④當(dāng)t≤
3
4
時(shí),函數(shù),f(x)=
2,(x≤1)
log
1
2
(x-t),(x>1)
是區(qū)間[0,+∞)上的“平頂型”函數(shù).
其中正確的是______.(填上你認(rèn)為正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=Asin(ωx+φ)的部分圖象如圖所示,則f(2010)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=Asin(ωx+
π
3
)(其中A>0,ω>0)的振幅為2,周期為π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+…+f(11)的值是(  )
A.2+2
2
B.2-2
2
C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=3cos(
x
2
+
π
3

(1)求出f(x)的最小正周期、單調(diào)增區(qū)間、對(duì)稱軸方程;
(2)說明此函數(shù)圖象可由y=cosx上的圖象經(jīng)怎樣的變換得到.

查看答案和解析>>

同步練習(xí)冊(cè)答案