10.函數(shù)y=sin2x(x∈[-$\frac{π}{8}$,$\frac{2π}{3}$])的單調(diào)遞減區(qū)間是( 。
A.[$\frac{π}{4}$,$\frac{2π}{3}$]B.[-$\frac{π}{8}$,$\frac{π}{4}$]C.[-$\frac{π}{8}$,$\frac{2π}{3}$]D.[0,$\frac{2π}{3}$]

分析 由條件利用正弦函數(shù)的單調(diào)性,求得結(jié)果.

解答 解:對(duì)于函數(shù)y=sin2x,令2kπ+$\frac{π}{2}$≤2x≤2kπ+$\frac{3π}{2}$,
求得kπ+$\frac{π}{4}$≤x≤kπ+$\frac{3π}{4}$,k∈Z,可得函數(shù)的減區(qū)間為[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z.
再根據(jù)x∈[-$\frac{π}{8}$,$\frac{2π}{3}$],可得函數(shù)的減區(qū)間為[$\frac{π}{4}$,$\frac{2π}{3}$],
故選:A.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若向量$\overrightarrow{{e}_{1}}$和$\overrightarrow{{e}_{2}}$是一組基底,且(k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)∥($\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=-x2-mx+n(m,n∈R).
(1)當(dāng)m=3,n=1時(shí),求不等式f(x)>3的解集;
(2)若函數(shù)y=f(x)的兩個(gè)零點(diǎn)分別在區(qū)間(-1,2)和(2,3)內(nèi),求m+2n的取值范圍;
(3)設(shè)h(x)=f(x)+ax2(a∈R),x1,x2是方程h(x)=0的兩個(gè)不等實(shí)根,若f(-2)=-4,且h(-1)•h(1)≤0,證明:當(dāng)m=a-1,時(shí),|x1-x2|取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.(1-x)10(2+x)的展開式中x3的系數(shù)為-195.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={x|x<3},B={y|y=2x,x>0),則A∩B=(  )
A.(0,1)B.(0,3)C.(1,+∞)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)$\overrightarrow{AB}$+$\overrightarrow{CA}$+$\overrightarrow{BC}$=$\overrightarrow{a}$,而$\overrightarrow$是一非零向量,則下列各結(jié)論:①$\overrightarrow{a}$與$\overrightarrow$共線;②$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{a}$;③$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow$.其中正確的是(  )
A.①②B.C.D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知p:2a≤x≤a2+1,q:x2-3(a+1)x+6a+2≤0,若p是q的充分條件,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,∠A=120°,AB=5,AC=3,O為△ABC的外心,若$\overrightarrow{OG}$=λ$\overrightarrow{OB}$+μ$\overrightarrow{OC}$,λ∈[0,$\frac{1}{2}$],μ∈[0,$\frac{1}{2}$],則點(diǎn)G的軌跡對(duì)應(yīng)圖形面積為$\frac{49\sqrt{3}}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E為PB的中點(diǎn).
(1)證明:CE⊥AB;
(2)若AB=PA=2,求四棱錐P-ABCD的體積;
(3)若∠PDA=60°,求直線CE與平面PAB所成角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案