分析 利用輔助角公式化f(x)=sin2x+acos2x=$\sqrt{1+{a}^{2}}sin(2x+θ)$(tanθ=a),由已知求出θ得到a值,則函數(shù)的周期及最值可求.
解答 解:∵f(x)=sin2x+acos2x=$\sqrt{1+{a}^{2}}sin(2x+θ)$(tanθ=a),
又x=$\frac{π}{6}$是函數(shù)的一條對(duì)稱軸,
∴$2×\frac{π}{6}+θ=\frac{π}{2}+kπ$,即$θ=\frac{π}{6}+kπ,k∈Z$.
則f(x)=$\sqrt{1+{a}^{2}}sin(2x+\frac{π}{6}+kπ)$.
T=$\frac{2π}{2}=π$;
由a=tanθ=tan($\frac{π}{6}+kπ$)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$,
得$\sqrt{1+{a}^{2}}=\sqrt{1+(\frac{\sqrt{3}}{3})^{2}}=\frac{2\sqrt{3}}{3}$.
∴函數(shù)f(x)的最大值是$\frac{2\sqrt{3}}{3}$.
故答案為:$π;\frac{2}{3}\sqrt{3}$.
點(diǎn)評(píng) 本題考查三角函數(shù)值的恒等變換應(yīng)用,考查了正弦型函數(shù)的圖象和性質(zhì),是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)的一條對(duì)稱軸為$x=\frac{π}{6}$ | |
B. | 函數(shù)在區(qū)間$[{\frac{π}{2},\frac{5π}{4}}]$內(nèi)單調(diào)遞增 | |
C. | ?x0∈(0,3π),使f(x0)=-1 | |
D. | ?a∈R,使得函數(shù)y=f(x+a)在其定義域內(nèi)為偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $-\frac{1}{3}$ | C. | $-\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
上一年的 出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
下一年 保費(fèi)倍率 | 85% | 100% | 125% | 150% | 175% | 200% |
連續(xù)兩年沒(méi)有出險(xiǎn)打7折,連續(xù)三年沒(méi)有出險(xiǎn)打6折 |
一年中出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
頻數(shù) | 500 | 380 | 100 | 15 | 4 | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com