【題目】已知函數(shù),其中

(1)當(dāng)時(shí),寫出函數(shù)的單調(diào)區(qū)間;(直接寫出答案,不必寫出證明過程)

(2)當(dāng)時(shí),求函數(shù)的零點(diǎn);

(3)當(dāng)時(shí),求函數(shù)上的最小值.

【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2),.(3)

【解析】

1)因?yàn)?/span>,當(dāng)時(shí),,畫出其函數(shù)圖象,即可求得答案;

2)當(dāng)時(shí),,分別討論時(shí)函數(shù)的零點(diǎn),即可求得函數(shù)的零點(diǎn);

3 化簡,分別討論,函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)最小值;

(1)當(dāng)時(shí),

畫出圖象

根據(jù)圖象可得:函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

(2)當(dāng)時(shí),

①當(dāng)時(shí),令,即

此方程,無實(shí)數(shù)解.

②當(dāng)時(shí),令,即,解得

由①②,得的零點(diǎn)為

(3)

當(dāng),即時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

當(dāng)時(shí),函數(shù)取到最小值,且

當(dāng),即時(shí),

函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

故當(dāng)時(shí),函數(shù)取到最小值,且

綜上所述,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)4sinxcos(x)+1.

(1)f()的值;

(2)f(x)的最小正周期;

(3)已知 ,且,求cos(2α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游景區(qū)的景點(diǎn)處和處之間有兩種到達(dá)方式,一種是沿直線步行,另一種是沿索道乘坐纜車,現(xiàn)有一名游客從處出發(fā),以的速度勻速步行,后到達(dá)處,在處停留后,再乘坐纜車回到.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為.

1)求該游客離景點(diǎn)的距離關(guān)于出發(fā)后的時(shí)間的函數(shù)解析式,并指出該函數(shù)的定義域;

2)做出(1)中函數(shù)的圖象,并求該游客離景點(diǎn)的距離不小于的總時(shí)長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】0123456可以組成多少個(gè)沒有重復(fù)數(shù)字的

1)五位數(shù);

2)五位偶數(shù);

3)能被5整除的五位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程是(θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:

(1)求曲線C的極坐標(biāo)方程;

(2)設(shè)直線θ=與直線l交于點(diǎn)M,與曲線C交于P,Q兩點(diǎn),已知|OM||OP||OQ)=10,求t的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某工廠生產(chǎn)的一種產(chǎn)品的尺寸是否合格,現(xiàn)從500件產(chǎn)品中抽出10件進(jìn)行檢驗(yàn)先將500件產(chǎn)品編號(hào)為000,001,002,,499,在隨機(jī)數(shù)表中任選一個(gè)數(shù)開始,例如選出第6行第8列的數(shù)4開始向右讀為了便于說明,下面摘取了隨機(jī)數(shù)表,附表1的第6行至第8,即第一個(gè)號(hào)碼為439,則選出的第4個(gè)號(hào)碼是(

162277943949544354821737932378

844217533157245506887704744767

630163785916955567199810507175

A.548B.443C.379D.217

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(1,2)是函數(shù)的圖象上一點(diǎn),數(shù)列的前項(xiàng)和是.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)上的單調(diào)性;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐的三條側(cè)棱兩兩垂直,,,分別是棱的中點(diǎn).

(1)證明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案