【題目】某校對高一年級學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì),全年級同學(xué)的成績?nèi)拷橛?0分與100分之間,將他們的成績數(shù)據(jù)繪制如圖所示的頻率分布直方圖.現(xiàn)從全體學(xué)生中,采用分層抽樣的方法抽取80名同學(xué)的試卷進(jìn)行分析,則從成績在[80,100]內(nèi)的學(xué)生中抽取的人數(shù)為( )
A.56
B.32
C.24
D.18
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一個(gè)三棱臺ABC-A′B′C′,試用兩個(gè)平面把這個(gè)三棱臺分成三部分,使每一部分都是一個(gè)三棱錐.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,則C=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,E,F(xiàn),H分別為A1B1 , B1C1 , CC1的中點(diǎn).
(Ⅰ)證明:BE⊥AH;
(Ⅱ)在棱D1C1上是否存在一點(diǎn)G,使得AG∥平面BEF?若存在,求出點(diǎn)G的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“可等域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個(gè)“可等域區(qū)間”.給出下列四個(gè)函數(shù): ①f(x)=sin x;②f(x)=2x2﹣1;③f(x)=|1﹣2x|
其中存在“可等域區(qū)間”的“可等域函數(shù)”為( )
A.①
B.②
C.①②
D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩組數(shù)據(jù)如莖葉圖所示,若它們的中位數(shù)相同,平均數(shù)也相同,則圖中的m+n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}(n∈N*)是首項(xiàng)為20的等差數(shù)列,其公差d≠0,且a1 , a4 , a5成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 當(dāng)Sn>0時(shí),求n的最大值;
(Ⅲ)設(shè)bn=5﹣ ,求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)當(dāng)a=b=1時(shí),求滿足f(x)=3x的x的值;
(2)若函數(shù)f(x)是定義在R上的奇函數(shù),
①判斷f(x)在R的單調(diào)性并用定義法證明;
②當(dāng)x≠0時(shí),函數(shù)g(x)滿足f(x)[g(x)+2]= (3﹣x﹣3x),若對任意x∈R且x≠0,不等式g(2x)≥mg(x)﹣11恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=-x3-2x2+4x,當(dāng)x∈[-3,3]時(shí),f(x)≥a有恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(-3,11)
B.[-33,+∞)
C.(-∞,-33]
D.[2,7]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com