分析 (1)過點(diǎn)D作DP⊥AB,過點(diǎn)D作DQ⊥BC,推導(dǎo)出DP⊥BB1,DQ⊥BB1,由此能證明BB1⊥平面ABCD.
(2)設(shè)AC與BD的交點(diǎn)為O,${A}_{1}{{C}_{1}}_{\;}^{\;}$與B1D1的交點(diǎn)為O1,以O(shè)為原點(diǎn),分別以O(shè)A,OB,OO1所在直線為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出cosθ.
解答 證明:(1)過點(diǎn)D作DP⊥AB,過點(diǎn)D作DQ⊥BC,
由平面ABCD⊥平面A1B1BA,BB1?平面A1B1BA,
得DP⊥BB1,
由平面ABCD⊥平面B1BCC1,BB1?平面B1BCC1,
得DQ⊥BB1,
又DP∩DQ=D,∴BB1⊥平面ABCD.
解:(2)由AB=AD=$\sqrt{5}$,且cos∠BAD=$\frac{3}{5}$,
在△ABD中利用余弦定理得BD=2,
設(shè)AC與BD的交點(diǎn)為O,${A}_{1}{{C}_{1}}_{\;}^{\;}$與B1D1的交點(diǎn)為O1,
以O(shè)為原點(diǎn),分別以O(shè)A,OB,OO1所在直線為x,y,z軸,
建立空間直角坐標(biāo)系,
則B(0,1,0),M(1,$\frac{1}{2}$,$\sqrt{5}$),N(-1,$\frac{1}{2}$,$\sqrt{5}$),
C(-2,0,0),A1(2,0,$\sqrt{5}$),A(2,0,0),
B1(0,1,$\sqrt{5}$),D1(0,-1,$\sqrt{5}$),
設(shè)平面BMN的法向量為$\overrightarrow{m}$=(a,b,c),
$\overrightarrow{BM}$=(1,-$\frac{1}{2},\sqrt{5}$),$\overrightarrow{MN}$=(-2,0,0),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BM}=a-\frac{1}{2}b+\sqrt{5}c=0}\\{\overrightarrow{m}•\overrightarrow{MN}=-2a=0}\end{array}\right.$,取b=10,得$\overrightarrow{m}$=(0,10,$\sqrt{5}$),
設(shè)平面AB1D1的法向量為$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{A{B}_{1}}$=(-2,1,$\sqrt{5}$),$\overrightarrow{{B}_{1}{D}_{1}}$=(0,-2,0),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=-2x+y+\sqrt{5}z=0}\\{\overrightarrow{n}•\overrightarrow{{B}_{1}{D}_{1}}=-2y=0}\end{array}\right.$,取x=5,得$\overrightarrow{n}$=(5,0,2$\sqrt{5}$),
∴cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2\sqrt{21}}{63}$.
點(diǎn)評(píng) 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {-1,0,1} | C. | [-1,1] | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=-\frac{π}{6}$ | B. | $x=-\frac{π}{4}$ | C. | $x=\frac{π}{3}$ | D. | $x=\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com