設(shè)
a
、
b
c
是任意的非零平面向量,且互不平行,則下列四個命題中的真命題是( 。
(
a
b
)
c
-(
c
a
)
b
=
0
;             ②|
a
|-|
b
|<|
a
-
b
|
;
(
b
c
)
a
-(
c
a
)
b
c
垂直;         ④λ
a
b
=
0
?λ=0,μ=0(λ,μ為實數(shù)).
分析:由題意知①中研究向量的數(shù)量積與數(shù)乘運算,根據(jù)運算規(guī)則判斷,②中研究向量差的模與模的差的關(guān)系,根據(jù)其幾何意義判斷,③中研究向量的垂直關(guān)系,根據(jù)數(shù)量積為0驗證,④中是平面向量基本定理的考查,根據(jù)平面向量基本定理判斷.
解答:解:∵
c
(
a
b
)
c
共線,
b
(
c
a
)
b
共線,由題設(shè)條件知:
b
c
不共線的任意的非零向量,知①不正確,
由向量的減法法則知,兩向量差的模一定大于兩向量模的差,故②正確,
因為[(
b
c
)
a
-(
c
a
)
b
]•
c
=0,
(
b
c
)
a
-(
c
a
)
b
c
垂直,所以命題③正確;
根據(jù)平面向量基本定理得:λ
a
b
=
0
?λ=0,μ=0(λ,μ為實數(shù)),故④正確.
綜上知②③④是正確命題
故選B.
點評:本題考查數(shù)量積的運算,數(shù)乘向量的運算,解題的關(guān)鍵是理解向量數(shù)量積運算及其幾何意義,理解數(shù)量積為0對應(yīng)的幾何意義是兩向量垂直.本題的選項設(shè)置不合理,其實只要能判斷①不正確,就可得出正確答案.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)
a
b
、
c
是任意的非零平面向量,且相互不共線,則
(
a
b
)•
c
-(
c
a
)•
b
=
0
;
|
a
|-|
b
|<|
a
-
b
|
;
(
b
c
)
a
-(
c
a
)
b
不與
c
垂直;
(3
a
+2
b
)•(3
a
-2
b
)
=9|
a
|2-4|
b
|2
中是真命題的有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)
a
,
b
,
c
是任意的非零平面向量且互不共線,以下四個命題:
(
a
b
)•
c
-(
c
a
)•
b
=
0

|
a
|+|
b
|>|
a
+
b
|
;
(
b
c
)•
a
-(
c
a
)•
b
c
垂直
;
④兩單位向量
e1
,
e2
平行,則
e1
e2
=1

⑤將函數(shù)y=2x的圖象按向量
a
平移后得到y(tǒng)=2x+6的圖象,
a
的坐標可以有無數(shù)種情況.
其中正確命題是
②③⑤
②③⑤
(填上正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)
a
,
b
c
是任意的非零平面向量,且相互不共線,則
(
a•
b
)
c
-(
c
a
)
b
=0

|
a
|-|
b
|<|
a
-
b
|

(
b
c
)
a
-(
c
a
)
b
不與
c
垂直         
(3
a
+2
b
)(3
a
-2
b
)=9|
a
|2-4|
b
|2
中,是真命題的有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)
a
、
b
、
c
是任意的非零向量,且相互不共線,給定下列結(jié)論
①(
a
b
)•
c
-(
c
a
)•
b
=
0
   
②|
a
|-|
b
|<|
a
-
b
|
③(
b
c
)•
a
-(
c
a
)•
b
不與
c
垂直
④(3
a
+2
b
)•(3
a
-2
b
)=9
a2
-4
b2

其中正確的敘述有
②④
②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)
a
,
b
,
c
是任意的非零向量,且相互不共線,有下列命題:
(1)(
a
b
c
-(
c
a
b
=0;
(2)|
a
|-|
b
|<|
a
-
b
|;
(3)(
b
c
a
-(
a
c
b
不與
c
垂直;
(4)(3
a
+4
b
)•(3
a
-4
b
)=9|
a
|2-16|
b
|2
其中,是真命題的有(  )

查看答案和解析>>

同步練習冊答案