【題目】設(shè)f(x)=xex﹣ax2﹣2ax.
(Ⅰ)若y=f(x)的圖象在x=﹣1處的切線(xiàn)經(jīng)過(guò)坐標(biāo)原點(diǎn),求a的值;
(Ⅱ)若f(x)存在極大值,且極大值小于0,求a的取值范圍.
【答案】(Ⅰ)a;(Ⅱ)(0,)∪(,).
【解析】
(Ⅰ)求f'(x)得到切線(xiàn)斜率,結(jié)合直線(xiàn)過(guò)原點(diǎn),即得解;
(Ⅱ)分a≤0,a>0兩種情況分析導(dǎo)數(shù)極值,得到f(ln2a)是極大值,由極大值小于0,求a的取值范圍.
(Ⅰ)f'(x)=ex+xex﹣2ax﹣2a=(x+1)(ex﹣2a),f'(﹣1)=0,f(﹣1)a,
所以由題意得:0,∴a;
(Ⅱ)由(Ⅰ)得,當(dāng)2a≤0時(shí),即a≤0時(shí),ex﹣2a≥0,
∴x<﹣1,f'(x)<0,f(x)單調(diào)遞減,
x>﹣1,f'(x)>0,f(x)單調(diào)遞增,
所以f(x)有極小值,無(wú)極大值;
當(dāng)a>0,f'(x)=0,x=﹣1或x=ln2a,
當(dāng)ln2a>﹣1時(shí),即a,
∴x∈(﹣∞,﹣1)和 (ln2a,+∞),f'(x)>0,f(x)單調(diào)遞增,
當(dāng)﹣1<x<ln2a時(shí),
f'(x)<0,f(x)單調(diào)遞減,
所以f(﹣1)為極大值,且f(﹣1)a,由題意得:f(﹣1)<0,∴;
當(dāng)ln2a<﹣1時(shí),即0<a,
∴x∈(﹣∞,ln2a)和 (﹣1,+∞),f'(x)>0,f(x)單調(diào)遞增,
x∈(ln2a,﹣1),f'(x)<0,f(x)單調(diào)遞減,
所以f(ln2a)是極大值,且f(ln2a)=2aln2a﹣aln22a﹣2aln2a=﹣aln22a<0恒成立;
當(dāng)ln2a=﹣1時(shí),即a,f'(x)=(x+1)2≥0恒成立,f(x)單調(diào)遞增,無(wú)極值,舍去;
綜上所述:符合條件的a的取值范圍:(0,)∪(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示.
(1)試估計(jì)該產(chǎn)品收益率的中位數(shù);
(2)若該產(chǎn)品的售價(jià)(元)與銷(xiāo)量(萬(wàn)份)之間有較強(qiáng)線(xiàn)性相關(guān)關(guān)系,從歷史銷(xiāo)售記錄中抽樣得到如表5組與的對(duì)應(yīng)數(shù)據(jù):
售價(jià)(元) | 25 | 30 | 38 | 45 | 52 |
銷(xiāo)量(萬(wàn)份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
根據(jù)表中數(shù)據(jù)算出關(guān)于的線(xiàn)性回歸方程為,求的值;
(3)若從表中五組銷(xiāo)量數(shù)據(jù)中隨機(jī)抽取兩組,記其中銷(xiāo)量超過(guò)6萬(wàn)份的組數(shù)為,求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定直線(xiàn):的距離比到定點(diǎn)的距離大2.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)在軸正半軸上,是否存在某個(gè)確定的點(diǎn),過(guò)該點(diǎn)的動(dòng)直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),使得為定值.如果存在,求出點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy下,曲線(xiàn)C1的參數(shù)方程為( 為參數(shù)),曲線(xiàn)C1在變換T:的作用下變成曲線(xiàn)C2.
(1)求曲線(xiàn)C2的普通方程;
(2)若m>1,求曲線(xiàn)C2與曲線(xiàn)C3:y=m|x|-m的公共點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于⊙O:x2+y2=1來(lái)說(shuō),P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若P與O重合,SP=r;若P不與O重合,射線(xiàn)OP與⊙O的交點(diǎn)為A,SP=AP的長(zhǎng)度(如圖).
(1)直線(xiàn)2x+2y+1=0在圓內(nèi)部分的點(diǎn)到⊙O的最長(zhǎng)距離為_____;
(2)若線(xiàn)段MN上存在點(diǎn)T,使得:
①點(diǎn)T在⊙O內(nèi);
②點(diǎn)P∈線(xiàn)段MN,都有ST≥SP成立.則線(xiàn)段MN的最大長(zhǎng)度為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列滿(mǎn)足:,,其中.
(1)若,求數(shù)列的前項(xiàng)的和;
(2)若,.
①求數(shù)列的通項(xiàng)公式;
②記數(shù)列的前項(xiàng)的和為,若無(wú)窮項(xiàng)等比數(shù)列始終滿(mǎn)足,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知{an}是等差數(shù)列,其前n項(xiàng)和Sn=n2﹣2n+b﹣1,{bn}是等比數(shù)列,其前n項(xiàng)和Tn,則數(shù)列{ bn +an}的前5項(xiàng)和為( )
A.37B.-27C.77D.46
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的離心率為,左、右頂點(diǎn)分別為A,B,點(diǎn)M是橢圓C上異于A,B的一點(diǎn),直線(xiàn)AM與y軸交于點(diǎn)P.
(Ⅰ)若點(diǎn)P在橢圓C的內(nèi)部,求直線(xiàn)AM的斜率的取值范圍;
(Ⅱ)設(shè)橢圓C的右焦點(diǎn)為F,點(diǎn)Q在y軸上,且∠PFQ=90°,求證:AQ∥BM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護(hù)知識(shí),某校開(kāi)展了“疫情防護(hù)”網(wǎng)絡(luò)知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加該活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿(mǎn)分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com