設(shè)函數(shù)的圖像在處取得極值4.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)于函數(shù),若存在兩個(gè)不等正數(shù),當(dāng)時(shí),函數(shù)的值域是,則把區(qū)間叫函數(shù)的“正保值區(qū)間”.問(wèn)函數(shù)是否存在“正保值區(qū)間”,若存在,求出所有的“正保值區(qū)間”;若不存在,請(qǐng)說(shuō)明理由.
(1)遞增區(qū)間是和,遞減區(qū)間是;(2)不存在.
解析試題分析:(1)求導(dǎo),利用極值點(diǎn)的坐標(biāo)列出方程組,解出,確定函數(shù)解析式,再求導(dǎo),求單調(diào)區(qū)間;(2)先假設(shè)存在“正保值區(qū)間”,通過(guò)已知條件驗(yàn)證是否符合題意,排除不符合題意得情況.
試題解析:(1), 1分
依題意則有:,即 解得 v 3分
∴.令,
由解得或,v 5分
所以函數(shù)的遞增區(qū)間是和,遞減區(qū)間是 6分
(2)設(shè)函數(shù)的“正保值區(qū)間”是,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/7f/9/1p7bm4.png" style="vertical-align:middle;" />,
故極值點(diǎn)不在區(qū)間上;
①若極值點(diǎn)在區(qū)間,此時(shí),在此區(qū)間上的最大值是4,不可能等于;故在區(qū)間上沒(méi)有極值點(diǎn); 8分
②若在上單調(diào)遞增,即或,
則,即,解得或不符合要求; 10分
③若在上單調(diào)減,即1<s<t<3,則,
兩式相減并除得:, ①
兩式相除可得,即,
整理并除以得:,②
由①、②可得,即是方程的兩根,
即存在,不合要求. 12分
綜上可得不存在滿足條件的s、t,即函數(shù)不存在“正保值區(qū)間”。 13分
考點(diǎn):1.求函數(shù)的極值;2.求最值;3.求單調(diào)區(qū)間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(其中)的圖象如圖所示.
(1) 求函數(shù)的解析式;
(2) 設(shè)函數(shù),且,求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)().
(1)若的定義域和值域均是,求實(shí)數(shù)的值;
(2)若對(duì)任意的,,總有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱(chēng)為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
(Ⅱ)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(Ⅲ)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/5b/f/uegsy3.png" style="vertical-align:middle;" />的函數(shù),其導(dǎo)函數(shù)為.若對(duì),均有,則稱(chēng)函數(shù)為上的夢(mèng)想函數(shù).
(Ⅰ)已知函數(shù),試判斷是否為其定義域上的夢(mèng)想函數(shù),并說(shuō)明理由;
(Ⅱ)已知函數(shù)(,)為其定義域上的夢(mèng)想函數(shù),求的取值范圍;
(Ⅲ)已知函數(shù)(,)為其定義域上的夢(mèng)想函數(shù),求的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域是,是的導(dǎo)函數(shù),且在
內(nèi)恒成立.
求函數(shù)的單調(diào)區(qū)間;
若,求的取值范圍;
(3) 設(shè)是的零點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(1)求函數(shù)在上的最小值
(2)對(duì)一切的恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對(duì)一切,都有成立
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com