16.已知四點(diǎn)A(-3,1)、B(-1,-2)、C(2,0)、D(3m2,m+4).
(Ⅰ)求證:$\overrightarrow{AB}$⊥$\overrightarrow{BC}$;
(Ⅱ)若$\overrightarrow{AD}$∥$\overrightarrow{BC}$,求實(shí)數(shù)m的值.

分析 分別根據(jù)向量的坐標(biāo)運(yùn)算和向量的平行和垂直的條件即可解答.

解答 解:(Ⅰ)∵A(-3,1)、B(-1,-2)、C(2,0),
∴$\overrightarrow{AB}$=(2,-3),$\overrightarrow{BC}$=(3,2),
∴$\overrightarrow{AB}$•$\overrightarrow{BC}$=2×3-3×2=0,
∴$\overrightarrow{AB}$⊥$\overrightarrow{BC}$;
(Ⅱ)∵A(-3,1)、D(3m2,m+4),
∴$\overrightarrow{AD}$=(3m2+3,m+3),
∵$\overrightarrow{AD}$∥$\overrightarrow{BC}$,
∴2(3m2+3)=3(m+3),
解得m=-$\frac{1}{2}$或m=1.

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算和向量的平行和垂直的條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若f(x)=ex,則$\underset{lim}{△x→0}$$\frac{f(1-3△x)-f(1)}{△x}$的值為(  )
A.3eB.-3eC.2eD.-2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知角α,β均為銳角,且cosα=$\frac{{2\sqrt{5}}}{5}$,sinβ=$\frac{{3\sqrt{10}}}{10}$,則α-β的值為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$-\frac{π}{4}$D.$\frac{π}{4}或-\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.定義在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)y=2cosx的圖象與y=3tanx的圖象的交點(diǎn)為P,過(guò)點(diǎn)P作PP1⊥x軸,垂足為P1,直線PP1與y=$\frac{1}{2}$sinx的圖象交于點(diǎn)P2,則線段P1P2的長(zhǎng)為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.sin63°cos33°-sin27°sin33°=( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$=(-3,2),$\overrightarrow$=(x,-1)且$\overrightarrow{a}$∥$\overrightarrow$,則x的值等于( 。
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,則點(diǎn)D到平面ACD1的距離為( 。
A.$\frac{2\sqrt{3}}{9}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2lnx,x>0}\\{{e}^{x},x≤0}\end{array}\right.$,則f(f($\frac{1}{e}$))=$\frac{1}{{e}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在三棱錐P-AMC中,AC=AM=PM,AM⊥AC,PM⊥平面AMC,B,D分別為CM,AC的中點(diǎn).
(Ⅰ)在PD上確定一點(diǎn)N,使得直線PM∥平面NAB,并說(shuō)明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面NAB和平面PAC所成銳二面角α的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案