11.函數(shù)y=$\frac{{x}^{2}-1}{\sqrt{2-|x|}}$的定義域是( 。
A.[-2,2]B.(-∞,-2]∪[2,+∞)C.(-2,2)D.(-∞,-2)∪(2,+∞)

分析 根據(jù)函數(shù)y的解析式,分母不為0,且二次根式的被開方數(shù)大于或等于0,列出不等式組求出解集即可.

解答 解:∵函數(shù)y=$\frac{{x}^{2}-1}{\sqrt{2-|x|}}$,
∴2-|x|>0,
即|x|<2,
解得-2<x<2,
∴函數(shù)y=$\frac{{x}^{2}-1}{\sqrt{2-|x|}}$的定義域是(-2,2).
故選:C.

點(diǎn)評 本題考查了函數(shù)的定義域及其求法問題,也考查了根式與分式的概念與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點(diǎn)的坐標(biāo)為(2,-1),則|z|=( 。
A.$\sqrt{5}$B.5C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合{x,xy,lg(xy)}={0,|x|,y},則log8(x2+3y2)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若(ax+1)(2x+$\frac{1}{x}$)5展開式中的常數(shù)項(xiàng)為-40,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知(3+x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,則a3+a4等于( 。
A.60B.30C.40D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,三個(gè)內(nèi)角A,B,C的對邊分別是a,b、c,如果a:b:c=1:1:$\sqrt{3}$,則A:B:C=(  )
A.1:1:2B.1:1:3C.1:1:4D.1:1:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求滿足下列條件的函數(shù)f(x)的解析式.
(1)函數(shù)f(x)滿足f($\sqrt{x}$+1)=x+2$\sqrt{x}$.
(2)函數(shù)f(x)滿足2f($\frac{1}{x}$)+f(x)=x(x≠0).
(3)若將(1)中條件“f($\sqrt{x}$+1)=x+2$\sqrt{x}$”變?yōu)椤癴(1+$\frac{1}{x}$)=$\frac{1+{x}^{2}}{{x}^{2}}$+$\frac{1}{x}$”,則f(x)的解析式是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若命題p:“關(guān)于x的不等式ax2+ax+1≤0的解集為R”為假命題,則實(shí)數(shù)a的取值范圍為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合P={1,2,3,4},Q={x∈R|0≤x≤3},那么下列結(jié)論正確的是( 。
A.P∩Q?QB.P∩Q?PC.P∩Q=PD.P∪Q=Q

查看答案和解析>>

同步練習(xí)冊答案