(本小題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱
被平面所截而得. ,的中點.
(Ⅰ)當時,求平面與平面的夾角的余弦值;
(Ⅱ)當為何值時,在棱上存在點,使平面?

(1)分別取、的中點、,連接、

以直線、、分別為軸、軸、軸建立如圖所示的空間直角坐標系,,則、、的坐標分別為(1,0,1)、(0,,3)、(-1,0,4),
=(-1,,2),=(-2,0,3)
設(shè)平面的法向量,

,可取      
平面的法向量可以取           
        
∴平面與平面的夾角的余弦值為
(2)在(1)的坐標系中,=(-1,,2),=(-2,0,-1).
上,設(shè),則


于是平面的充要條件為
                                
由此解得,          
即當=2時,在上存在靠近的第一個四等分點,使平面
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體中,點的中點.
(1) 求所成的角的余弦值;
(2) 求直線與平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知矩形ABCD所在平面,PA=AD=,E為線段PD上一點,G為線段PC的中點.
(1)當E為PD的中點時,求證:
(2)當時,求證:BG//平面AEC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在正方體ABCD-A1B1C1D1中,BC1與平面BB1D1D所成角為( )
A.30°
B.45°
C.60°
D.120°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐P—ABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點.
(1)求證:EF∥面PAD;
(2)求證:面PDC⊥面PAB;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四面體中,,點分別是棱 的中點。
(Ⅰ)求證:平面;
(Ⅱ)求證:四邊形為矩形;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中錯誤的是( ).
A.若,則
B.若,,則
C.若,,則
D.若=AB,//AB,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖正四面體ABCD,E為棱BC上的動點,則異面直線BD和AE所成角的余弦值的范圍為 _______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱錐中,底面,,的中點,點上,且.
(1)求證:平面平面;
(2)求平面與平面所成的二面角的平面角(銳角)的余弦值.

查看答案和解析>>

同步練習冊答案