x
+
1
2
x
8的展開式中x2的系數(shù)為(  )
A、
35
16
B、
35
8
C、
35
4
D、7
考點:二項式系數(shù)的性質(zhì)
專題:計算題,二項式定理
分析:由二項式定理,可得(
x
+
1
2
x
8的展開式的通項,在其中令x的指數(shù)為0,解可得r的值,將r的值代入通項可得答案.
解答: 解:由二項式定理,可得(
x
+
1
2
x
8的展開式的通項為Tr+1=C8r×(
x
8-r×(
1
2
x
r=(
1
2
r×C8r×x4-r;
令4-r=2,解可得r=2;
則r=2時,T3=
1
4
×C82×x2=7x2;
即其展開式中x2的系數(shù)為7;
故選:D.
點評:本題考查二項式定理的運用,解題的關(guān)鍵在于準確運用二項式展開式的通項.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD中,PA⊥面ABCD,四邊形ABCD是正方形,且AB=a,PA=
2
a,
(1)求PC與平面ABCD所成的角;
(2)求AC與PD所成角的余弦值;
(3)求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)滿足f(0)=3,f(x+1)-f(x)=4x.
(1)求y=f(x)的解析式;
(2)求y=f(x)在[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓O:x2+y2=64分別與x軸、y軸的正半軸交于點A、B,直線l:y=kx-k+2分別于x軸、y軸的正半軸交于點N、M.
(Ⅰ)求證:直線l恒過定點,并求出定點P的坐標;
(Ⅱ)求證:直線l與圓O恒有兩個不同的交點;
(Ⅲ)求當(dāng)M、N恒在圓O內(nèi)部時,試求四邊形ABMN面積S的最大值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,sinA=a,cosB=b,若a2+b2<1,則cosC=
 
(用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一籃球運動員投籃的命中率為60%,以η表示他首次投中時累計已投籃的次數(shù),則η的數(shù)學(xué)期望是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c,d均為實數(shù),下列命題中正確的是( 。
A、a>b⇒ac2>bc2
B、a<b<0,c<d<0⇒ac<bd
C、a>b,ac<bc⇒c>0
D、a>b,c>d⇒a+c>b+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,y>0,則“x2+y2>1”是“x+y>1”的(  )
A、必要不充分條件
B、充分不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,設(shè)函數(shù)f(x)=x|x-a|-x.
(Ⅰ) 若a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 若a≤1,對于任意的x∈[0,t],不等式-1≤f(x)≤6恒成立,求實數(shù)t的最大值及此時a的值.

查看答案和解析>>

同步練習(xí)冊答案