【題目】每年的寒冷天氣都會(huì)帶熱“御寒經(jīng)濟(jì)”,以餐飲業(yè)為例,當(dāng)外面太冷時(shí),不少人都會(huì)選擇叫外賣(mài)上門(mén),外賣(mài)商家的訂單就會(huì)增加,下表是某餐飲店從外賣(mài)數(shù)據(jù)中抽取的5天的日平均氣溫與外賣(mài)訂單數(shù).
(Ⅰ)經(jīng)過(guò)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該店外賣(mài)訂單數(shù)(份)成線(xiàn)性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測(cè)氣溫為時(shí)該店的外賣(mài)訂單數(shù)(結(jié)果四舍五入保留整數(shù));
(Ⅱ)天氣預(yù)報(bào)預(yù)測(cè)未來(lái)一周內(nèi)(七天),有3天日平均氣溫不高于,若把這7天的預(yù)測(cè)數(shù)據(jù)當(dāng)成真實(shí)數(shù)據(jù),則從這7天任意選取2天,求恰有1天外賣(mài)訂單數(shù)不低于160份的概率.
附注:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:.
【答案】(Ⅰ) 可預(yù)測(cè)當(dāng)平均氣溫為時(shí),該店的外賣(mài)訂單數(shù)為193份;(Ⅱ) .
【解析】分析:(Ⅰ) 由題意可知 , ,據(jù)此計(jì)算可得,, 則關(guān)于的回歸方程為,可預(yù)測(cè)當(dāng)平均氣溫為時(shí),該店的外賣(mài)訂單數(shù)為193份.
(Ⅱ)外賣(mài)訂單數(shù)不低于160份的概率就是日平均氣溫不高于的概率,據(jù)此可得這7天中任取2天結(jié)果有21種,恰有1天平均氣溫不高于的結(jié)果有12種,由古典概型計(jì)算公式可得所求概率.
詳解:(Ⅰ) 由題意可知 , ,
,
,
所以,
,
所以關(guān)于的回歸方程為,
當(dāng)時(shí),.
所以可預(yù)測(cè)當(dāng)平均氣溫為時(shí),該店的外賣(mài)訂單數(shù)為193份.
(Ⅱ)外賣(mài)訂單數(shù)不低于160份的概率就是日平均氣溫不高于的概率,
由題意,設(shè)日平均氣溫不高于的3天分別記作,另外4天記作,
從這7天中任取2天結(jié)果有:
,共21種,
恰有1天平均氣溫不高于的結(jié)果有:
共12種,
所以所求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線(xiàn)方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸的平面直角坐標(biāo)系中,曲線(xiàn)(為參數(shù))
(1)將化為直角坐標(biāo)系中普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);
(2)若極坐標(biāo)系中上的點(diǎn)對(duì)應(yīng)的極角為,為上的動(dòng)點(diǎn),求中點(diǎn)到直線(xiàn)(為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿(mǎn)足,其中,且, 為常數(shù).
(1)若是等差數(shù)列,且公差,求的值;
(2)若,且存在,使得對(duì)任意的都成立,求的最小值;
(3)若,且數(shù)列不是常數(shù)列,如果存在正整數(shù),使得對(duì)任意的均成立. 求所有滿(mǎn)足條件的數(shù)列中的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線(xiàn)經(jīng)過(guò)點(diǎn).曲線(xiàn)的極坐標(biāo)方程為.
(1)求直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(2)過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn)交曲線(xiàn)于兩點(diǎn)(在軸上方),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘數(shù)學(xué)家阿波羅尼斯在他的著作《圓錐曲線(xiàn)論》中記載了用平面切割圓錐得到圓錐曲線(xiàn)的方法.如圖,將兩個(gè)完全相同的圓錐對(duì)頂放置(兩圓錐的軸重合),已知兩個(gè)圓錐的底面半徑均為1,母線(xiàn)長(zhǎng)均為3,記過(guò)圓錐軸的平面為平面(與兩個(gè)圓錐側(cè)面的交線(xiàn)為),用平行于的平面截圓錐,該平面與兩個(gè)圓錐側(cè)面的交線(xiàn)即雙曲線(xiàn)的一部分,且雙曲線(xiàn)的兩條漸近線(xiàn)分別平行于,則雙曲線(xiàn)的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若在處取得極值,求實(shí)數(shù)的值;
(2)對(duì)任意實(shí)數(shù),都有,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),證明:存在唯一,使得,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為點(diǎn)是橢圓上任意一點(diǎn),且的最大值為4,橢圓的離心率與雙曲線(xiàn)的離心率互為倒數(shù).
(1)求橢圓方程;
(2)設(shè)點(diǎn),過(guò)點(diǎn)作直線(xiàn)與圓相切且分別交橢圓于,求直線(xiàn)的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的焦距為,斜率為的直線(xiàn)與橢圓交于兩點(diǎn),若線(xiàn)段的中點(diǎn)為,且直線(xiàn)的斜率為.
(1)求橢圓的方程;
(2)若過(guò)左焦點(diǎn)斜率為的直線(xiàn)與橢圓交于點(diǎn) 為橢圓上一點(diǎn),且滿(mǎn)足,問(wèn):是否為定值?若是,求出此定值,若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com