設(shè)函數(shù)f(x)=sinx+cosx,若0≤x≤2012π,則函數(shù)f(x)的各極值之和為(  )
分析:先求出其導(dǎo)函數(shù),利用導(dǎo)函數(shù)得到其單調(diào)區(qū)間以及其極值點(diǎn),進(jìn)而求出其極值;再利用等比數(shù)列的求和公式求出函數(shù)f(x)的各極值之和即可.
解答:解:∵函數(shù)f(x)=sinx-cosx,
∴f′(x)=(sinx-cosx)′=cosx-sinx,
∵x∈(2kπ+
π
4
,2kπ+
4
)時(shí),f′(x)<0,x∈(2kπ-
4
,2kπ+
π
4
)時(shí),f′(x)>0,
∴x∈(2kπ-
4
,2kπ+
π
4
)時(shí)原函數(shù)遞增,x∈(2kπ+
π
4
,2kπ+
4
)時(shí),原函數(shù)遞減,
故當(dāng)x=kπ+
π
4
時(shí),f(x)取極值,
其極值為f(kπ+
π
4
)=sin(kπ+
π
4
)-cos(kπ+
π
4
)=0
又0≤x≤2012π,
∴函數(shù)f(x)的各極值之和S=0+0+0+…+0=0
故答案為 C.
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值以及等比數(shù)列求和公式的應(yīng)用.在求函數(shù)的極值時(shí),須注意極值兩側(cè)導(dǎo)函數(shù)值符號(hào)相反
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖是函數(shù)Q(x)的圖象的一部分,設(shè)函數(shù)f(x)=sinx,g ( x )=
1
x
,則Q(x)是( 。
A、
f(x)
g(x)
B、f(x)g(x)
C、f(x)-g(x)
D、f(x)+g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sinx,g(x)=
1
x
,如圖是函數(shù)F(x)圖象的一部分,則F(x)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且
bc
b2+c2-a2
=tanA

(1)求角A;
(2)設(shè)函數(shù)f(x)=sinx+2sinAcosx將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來(lái)的
1
2
,把所得圖象向右平移
π
6
個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的對(duì)稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•杭州一模)設(shè)函數(shù)f(x)=
sinx+cosx-|sinx-cosx|
2
(x∈R),若在區(qū)間[0,m]上方程f(x)=-
3
2
恰有4個(gè)解,則實(shí)數(shù)m的取值范圍是
[
3
,
17π
6
)
[
3
17π
6
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sinx-cosx+ax+1.
(1)當(dāng)a=1,x∈[0,2π]時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)若函數(shù)f(x)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案