如圖,在中,已知AB=2,BC=1,在AB、AD、CB、CD上,分別截取AE=AH=CF=CG=x(x>0),設(shè)四邊形EFGH的面積為y.
(1)寫出四邊形EFGH的面積y與x之間的函數(shù)關(guān)系式;
(2)求當(dāng)x為何值時y取得最大值,最大值是多少?

【答案】分析:(1)利用四邊形的面積等于矩形的面積減去四個直角三角形的面積,得到y(tǒng)與x的函數(shù)關(guān)系.
(2)通過對函數(shù)配方,求出函數(shù)的對稱軸,對稱軸在定義域內(nèi),在對稱軸處取得最值.
解答:解:(1)因為△AEH≌△CFG,△EBF≌△HDG,
所以y=S矩形ABCD-2S△AEH-2S△EFB,
=
=-2x2+3x(0<x≤1).
(2),所以當(dāng)時,
點評:本題考查將實際問題轉(zhuǎn)化為二次函數(shù)模型、通過配方求函數(shù)的對稱軸;
二次函數(shù)的最值由對稱軸與定義域的關(guān)系決定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在中,已知AB=2,BC=1,在AB、AD、CB、CD上,分別截取AE=AH=CF=CG=x(x>0),設(shè)四邊形EFGH的面積為y.
(1)寫出四邊形EFGH的面積y與x之間的函數(shù)關(guān)系式;
(2)求當(dāng)x為何值時y取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正四棱柱ABCD-A1B1C1D1中,已知AB=2,AA1=5,
E、F分別為D1D、B1B上的點,且DE=B1F=1.
(Ⅰ)求證:BE⊥平面ACF;
(Ⅱ)求點E到平面ACF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆江蘇省寶應(yīng)縣高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在△中,已知,D是BC邊上一點,AD=10,AC=4,DC=6,求AB的長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在中,已知AB=2,BC=1,在AB、AD、CB、CD上,分別截取AE=AH=CF=CG=x(x>0),設(shè)四邊形EFGH的面積為y.
(1)寫出四邊形EFGH的面積y與x之間的函數(shù)關(guān)系式;
(2)求當(dāng)x為何值時y取得最大值,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案