【題目】某流行病爆發(fā)期間,某市衛(wèi)生防疫部門(mén)給出的治療方案中推薦了三種治療藥物,,的使用是互斥且完備的),并且感染患者按規(guī)定都得到了藥物治療.患者在關(guān)于這三種藥物的有關(guān)參數(shù)及市場(chǎng)調(diào)查數(shù)據(jù)如下表所示:(表中的數(shù)據(jù)都以一個(gè)療程計(jì))

藥物

單價(jià)(單位:元)

600

1000

800

治愈率

市場(chǎng)使用量(單位:人)

305

122

183

(Ⅰ)從感染患者中任取一人,試求其一個(gè)療程被治愈的概率大約是多少?

(Ⅱ)試估算每名感染患者在一個(gè)療程的藥物治療費(fèi)用平均是多少.

【答案】(Ⅰ)0.885(Ⅱ)740

【解析】

(Ⅰ)求出治愈人數(shù)與總樣本人數(shù)的比值,用頻率估計(jì)概率即可;

(Ⅱ)由題意知,治療費(fèi)用可能取值為600、1000800,分別求出對(duì)應(yīng)概率,代入離散型隨機(jī)變量的數(shù)學(xué)期望公式求解即可.

(Ⅰ);

(Ⅱ)感染者在一個(gè)療程的藥物治療費(fèi)是600元的概率為

治療費(fèi)是1000元的概率為;

治療費(fèi)是800元的概率為

藥物治療費(fèi)用平均為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某初中學(xué)校學(xué)生睡眠狀況,在該校全體學(xué)生中隨機(jī)抽取了容量為120的樣本,統(tǒng)計(jì)睡眠時(shí)間(單位:.經(jīng)統(tǒng)計(jì),時(shí)間均在區(qū)間內(nèi),將其按,,,分成6組,制成如圖所示的頻率分布直方圖:

1)世界衛(wèi)生組織表明,該年齡段的學(xué)生睡眠時(shí)間服從正態(tài)分布,其標(biāo)準(zhǔn)為:該年齡段的學(xué)生睡眠時(shí)間的平均值,方差.根據(jù)原則,用樣本估計(jì)總體,判斷該初中學(xué)校學(xué)生睡眠時(shí)間在區(qū)間上是否達(dá)標(biāo)?

(參考公式:,,

2)若規(guī)定睡眠時(shí)間不低于為優(yōu)質(zhì)睡眠.已知所抽取的這120名學(xué)生中,男、女睡眠質(zhì)量人數(shù)如下列聯(lián)表所示:

優(yōu)質(zhì)睡眠

非優(yōu)質(zhì)睡眠

合計(jì)

60

19

合計(jì)

將列聯(lián)表數(shù)據(jù)補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)睡眠與性別有關(guān)系,并說(shuō)明理由;

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某果園今年的臍橙豐收了,果園準(zhǔn)備利用互聯(lián)網(wǎng)銷(xiāo)售.為了更好的銷(xiāo)售,現(xiàn)隨機(jī)摘下了個(gè)臍橙進(jìn)行測(cè)重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計(jì)質(zhì)量的數(shù)據(jù)作出頻率分布直方圖如下圖所示:

1)按分層抽樣的方法從質(zhì)量落在的臍橙中隨機(jī)抽取個(gè),再?gòu)倪@個(gè)臍橙中隨機(jī)抽個(gè),求這個(gè)臍橙質(zhì)量都不小于克的概率;

2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該果園的臍橙樹(shù)上大約還有個(gè)臍橙待出售,某電商提出兩種收購(gòu)方案:甲:所有臍橙均以/千克收購(gòu);乙:低于克的臍橙以/個(gè)收購(gòu),高于或等于克的以/個(gè)收購(gòu).請(qǐng)通過(guò)計(jì)算為該果園選擇收益最好的方案.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的奇數(shù)項(xiàng)是公差為的等差數(shù)列,偶數(shù)項(xiàng)是公差為的等差數(shù)列, 是數(shù)列的前項(xiàng)和,

(1)若,求;

(2)已知,且對(duì)任意的,有恒成立,求證:數(shù)列是等差數(shù)列;

(3)若,且存在正整數(shù),使得,求當(dāng)最大時(shí),數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司準(zhǔn)備上市一款新型轎車(chē)零配件,上市之前擬在其一個(gè)下屬4S店進(jìn)行連續(xù)30天的試銷(xiāo).定價(jià)為1000/.試銷(xiāo)結(jié)束后統(tǒng)計(jì)得到該4S店這30天內(nèi)的日銷(xiāo)售量(單位:件)的數(shù)據(jù)如下表:

日銷(xiāo)售量

40

60

80

100

頻數(shù)

9

12

6

3

1)若該4S店試銷(xiāo)期間每個(gè)零件的進(jìn)價(jià)為650/件,求試銷(xiāo)連續(xù)30天中該零件日銷(xiāo)售總利潤(rùn)不低于24500元的頻率;

2)試銷(xiāo)結(jié)束后,這款零件正式上市,每個(gè)定價(jià)仍為1000元,但生產(chǎn)公司對(duì)該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價(jià)為550/件;小箱每箱有45件,批發(fā)價(jià)為600/.4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒(méi)銷(xiāo)售出的零件按批發(fā)價(jià)的9折轉(zhuǎn)給該公司的另一下屬4S.假設(shè)該4店試銷(xiāo)后的連續(xù)30天的日銷(xiāo)售量(單位:件)的數(shù)據(jù)如下表:

日銷(xiāo)售量

50

70

90

110

頻數(shù)

5

15

8

2

(。┰O(shè)該4S店試銷(xiāo)結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤(rùn);

(ⅱ)以總利潤(rùn)作為決策依據(jù),該4S店試銷(xiāo)結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓柱內(nèi)有一個(gè)三棱錐,為圓柱的一條母線,,為下底面圓的直徑,,.

1)在圓柱的上底面圓內(nèi)是否存在一點(diǎn),使得平面?證明你的結(jié)論.

2)設(shè)點(diǎn)為棱的中點(diǎn),,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)的圖象在點(diǎn)處的切線方程為.

1)討論的導(dǎo)函數(shù)的零點(diǎn)的個(gè)數(shù);

2)若,且上的最小值為,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,已知平面,點(diǎn)為線段的中點(diǎn).

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求曲線與曲線的公切線的方程;

2)設(shè)函數(shù)的兩個(gè)極值點(diǎn)為,求證:關(guān)于的方程有唯一解.

查看答案和解析>>

同步練習(xí)冊(cè)答案