【題目】如圖,已知圓柱內(nèi)有一個(gè)三棱錐,為圓柱的一條母線,,為下底面圓的直徑,,.
(1)在圓柱的上底面圓內(nèi)是否存在一點(diǎn),使得平面?證明你的結(jié)論.
(2)設(shè)點(diǎn)為棱的中點(diǎn),,求平面與平面所成銳二面角的余弦值.
【答案】(1)當(dāng)點(diǎn)為上底面圓的圓心時(shí),證明見(jiàn)解析.(2)
【解析】
(1)當(dāng)點(diǎn)為上底面圓的圓心時(shí),平面,取上底面圓的圓心為,連接,,,,先證明四邊形為平行四邊形,可得到,然后可得四邊形為平行四邊形,然后得到即可.
(2)以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,算出平面的法向量,平面的一個(gè)法向量為,然后算出答案即可.
(1)當(dāng)點(diǎn)為上底面圓的圓心時(shí),平面.
證明如下:
如圖,取上底面圓的圓心為,連接,,,,
則,.
所以四邊形為平行四邊形,
所以,所以.
又,所以四邊形為平行四邊形,
所以.
因?yàn)?/span>平面,平面,
所以平面.
故點(diǎn)為上底面圓的圓心時(shí),平面.
(2)以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.
于是可得,,,,,,
所以,.
設(shè)平面的一個(gè)法向量為,
由,得.
令,則可取.
取平面的一個(gè)法向量為.
設(shè)平面與平面所成的銳二面角為,則
,
故平面與平面所成銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)在其圖象上存在不同的兩點(diǎn)A(x1,y1),B(x2,y2),其坐標(biāo)滿(mǎn)足條件:|x1x2+y1y2|的最大值為0,則稱(chēng)f(x)為“柯西函數(shù)”,則下列函數(shù):
①f(x)=x(x>0);
②f(x)=lnx(0<x<3);
③f(x)=cosx;
④f(x)=x2﹣1.
其中為“柯西函數(shù)”的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,且拋物線在點(diǎn)處的切線斜率為,直線與拋物線交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),且直線垂直于直線.
(1)求證:直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);
(2)如圖,直線交軸于點(diǎn),直線交軸于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
已知曲線C:(t為參數(shù)), C:(為參數(shù))。
(1)化C,C的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)若C上的點(diǎn)P對(duì)應(yīng)的參數(shù)為,Q為C上的動(dòng)點(diǎn),求中點(diǎn)到直線
(t為參數(shù))距離的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某流行病爆發(fā)期間,某市衛(wèi)生防疫部門(mén)給出的治療方案中推薦了三種治療藥物,,(,,的使用是互斥且完備的),并且感染患者按規(guī)定都得到了藥物治療.患者在關(guān)于這三種藥物的有關(guān)參數(shù)及市場(chǎng)調(diào)查數(shù)據(jù)如下表所示:(表中的數(shù)據(jù)都以一個(gè)療程計(jì))
藥物 | |||
單價(jià)(單位:元) | 600 | 1000 | 800 |
治愈率 | |||
市場(chǎng)使用量(單位:人) | 305 | 122 | 183 |
(Ⅰ)從感染患者中任取一人,試求其一個(gè)療程被治愈的概率大約是多少?
(Ⅱ)試估算每名感染患者在一個(gè)療程的藥物治療費(fèi)用平均是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓柱內(nèi)有一個(gè)三棱錐,為圓柱的一條母線,,為下底面圓的直徑,,.
(1)在圓柱的上底面圓內(nèi)是否存在一點(diǎn),使得平面?證明你的結(jié)論.
(2)設(shè)點(diǎn)為棱的中點(diǎn),,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司以客戶(hù)滿(mǎn)意為出發(fā)點(diǎn),隨機(jī)抽選2000名客戶(hù),以調(diào)查問(wèn)卷的形式分析影響客戶(hù)滿(mǎn)意度的各項(xiàng)因素.每名客戶(hù)填寫(xiě)一個(gè)因素,下圖為客戶(hù)滿(mǎn)意度分析的帕累托圖.帕累托圖用雙直角坐標(biāo)系表示,左邊縱坐標(biāo)表示頻數(shù),右邊縱坐標(biāo)表示頻率,分析線表示累計(jì)頻率,橫坐標(biāo)表示影響滿(mǎn)意度的各項(xiàng)因素,按影響程度(即頻數(shù))的大小從左到右排列,以下結(jié)論正確的個(gè)數(shù)是( ).
①35.6%的客戶(hù)認(rèn)為態(tài)度良好影響他們的滿(mǎn)意度;
②156位客戶(hù)認(rèn)為使用禮貌用語(yǔ)影響他們的滿(mǎn)意度;
③最影響客戶(hù)滿(mǎn)意度的因素是電話(huà)接起快速;
④不超過(guò)10%的客戶(hù)認(rèn)為工單派發(fā)準(zhǔn)確影響他們的滿(mǎn)意度.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的不規(guī)則幾何體中,已知四邊形是正方形,四邊形是平行四邊形,平面平面,.
(1)證明:;
(2)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面多邊形中,是邊長(zhǎng)為2的正方形,為等腰梯形,為的中點(diǎn),且,,現(xiàn)將梯形沿折疊,使平面平面.
(1)求證:平面;
(2)求直線與平面所成角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com