【題目】已知拋物線,圓.
(1)若拋物線的焦點(diǎn)在圓上,且為 和圓 的一個(gè)交點(diǎn),求;
(2)若直線與拋物線和圓分別相切于點(diǎn),求的最小值及相應(yīng)的值.
【答案】(1);(2)的最小值為,此時(shí).
【解析】
試題分析:(1)首先求得焦點(diǎn)的坐標(biāo),由此求得拋物線的方程,然后聯(lián)立拋物線與圓的方程求得,最后利用拋物線的定義求得的長(zhǎng);(2)設(shè),由此設(shè)出直線切線的方程,然后根據(jù)求得與的關(guān)系式,從而求得關(guān)于的關(guān)系式,進(jìn)而利用基本不等式求得其最小值,以及的值.
試題解析:(1)由題意得F(1,0),從而有C:x2=4y.
解方程組,得yA=-2,所以|AF|=-1. …5分
(2)設(shè)M(x0,y0),則切線l:y=(x-x0)+y0,
整理得x0x-py-py0=0. …6分
由|ON|=1得|py0|==,
所以p=且y-1>0, …8分
所以|MN|2=|OM|2-1=x+y-1=2py0+y-1
=+y-1=4++(y-1)≥8,當(dāng)且僅當(dāng)y0=時(shí)等號(hào)成立,
所以|MN|的最小值為2,此時(shí)p=. …12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓經(jīng)過(guò)伸縮變換后得到曲線,相互垂直的直線過(guò)定點(diǎn)與曲線相交于兩點(diǎn), 與曲線相交于兩點(diǎn).
(1)求曲線的直角坐標(biāo)方程;
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,在底面ABCD中,AD//BC,AD⊥CD,Q是AD的中點(diǎn),M是棱PC的中點(diǎn),PA=PD=2,BC=AD=1,CD=,PB=.
(Ⅰ)求證:平面PAD⊥底面ABCD;
(Ⅱ)試求三棱錐B-PQM的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)為了解居民參加體育鍛煉的情況,從該社區(qū)隨機(jī)抽取了18名男性居民和12名女性居民,對(duì)他們參加體育鍛煉的情況進(jìn)行問(wèn)卷調(diào)查.現(xiàn)按是否參加體育鍛煉將居民分成兩類:甲類(不參加體育鍛煉)、乙類(參加體育鍛煉),結(jié)果如下表:
甲類 | 乙類 | |
男性居民 | 3 | 15 |
女性居民 | 6 | 6 |
(Ⅰ)根據(jù)上表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表;
男性居民 | 女性居民 | 總計(jì) | |
不參加體育鍛煉 | |||
參加體育鍛煉 | |||
總計(jì) |
(Ⅱ)通過(guò)計(jì)算判斷是否有90%的把握認(rèn)為參加體育鍛煉與否與性別有關(guān)?
附:,其中.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018湖南(長(zhǎng)郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考】已知函數(shù)(其中且為常數(shù), 為自然對(duì)數(shù)的底數(shù), ).
(Ⅰ)若函數(shù)的極值點(diǎn)只有一個(gè),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),若(其中)恒成立,求的最小值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).
(1)已知函數(shù),利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;
(2)已知函數(shù)=和函數(shù),若對(duì)任意,總存在,使得(x2)=成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來(lái)越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租車時(shí)間不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人相互獨(dú)立來(lái)該租車點(diǎn)租車騎游(各租一車一次),設(shè)甲、乙不超過(guò)兩小時(shí)還車的概率分別為;兩小時(shí)以上且不超過(guò)三小時(shí)還車的概率分別為;兩人租車時(shí)間都不會(huì)超過(guò)四小時(shí).
(1)求出甲、乙兩人所付租車費(fèi)用相同的概率;
(2)求甲、乙兩人所付的租車費(fèi)用之和為4元時(shí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某糕點(diǎn)房推出一類新品蛋糕,該蛋糕的成本價(jià)為4元,售價(jià)為8元.受保質(zhì)期的影響,當(dāng)天沒(méi)有銷售完的部分只能銷毀.經(jīng)過(guò)長(zhǎng)期的調(diào)研,統(tǒng)計(jì)了一下該新品的日需求量.現(xiàn)將近期一個(gè)月(30天)的需求量展示如下:
日需求量x(個(gè)) | 20 | 30 | 40 | 50 |
天數(shù) | 5 | 10 | 10 | 5 |
(1)從這30天中任取兩天,求兩天的日需求量均為40個(gè)的概率.
(2)以上表中的頻率作為概率,列出日需求量的分布列,并求該月的日需求量的期望.
(3)根據(jù)(2)中的分布列求得當(dāng)該糕點(diǎn)房一天制作35個(gè)該類蛋糕時(shí),對(duì)應(yīng)的利潤(rùn)的期望值為;現(xiàn)有員工建議擴(kuò)大生產(chǎn)一天45個(gè),求利用利潤(rùn)的期望值判斷此建議該不該被采納.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)是圓心為半徑為的半圓弧上從點(diǎn)數(shù)起的第一個(gè)三等分點(diǎn),點(diǎn)是圓心為半徑為的半圓弧的中點(diǎn),、分別是兩個(gè)半圓的直徑,,直線與兩個(gè)半圓所在的平面均垂直,直線、共面.
(1)求三棱錐的體積;
(2)求直線與所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com