3.設(shè)a=log310,b=log37,則3a-b=(  )
A.$\frac{10}{49}$B.$\frac{49}{10}$C.$\frac{7}{10}$D.$\frac{10}{7}$

分析 由已知得3a=10,3b=7,從而3a-b=$\frac{10}{7}$.

解答 解:∵a=log310,b=log37,
∴3a=10,3b=7,
∴3a-b=$\frac{{3}^{a}}{{3}^}$=$\frac{10}{7}$.
故選:D

點評 本題考查代數(shù)式的值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知關(guān)于x的方程2x2-mx+1=0,$x∈[{\frac{1}{2},4}]$存在兩個不同的實根,則實數(shù)m的取值范圍為(  )
A.(2,3]B.$(2\sqrt{2},8\frac{1}{4})$C.$[3,8\frac{1}{4}]$D.$(2\sqrt{2},3]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)f(x)=2sinωx(ω>0)在區(qū)間$[{-\frac{π}{6}\;,\;\;\frac{π}{4}}]$上單調(diào)遞增,則ω的最大值為2.且當(dāng)ω取最大值時f(x)的值域為[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某校校慶期間,大會秘書團(tuán)計劃從包括甲、乙兩人在內(nèi)的七名老師中隨機(jī)選擇4名參加志愿者服務(wù)工作,根據(jù)工作特點要求甲、乙兩人中至少有1人參加,則甲、乙都被選中且列隊服務(wù)時不相鄰的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)求點A到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)求二面角D-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)k為常數(shù),且$cos(\frac{π}{4}-α)=k$,則用k表示sin2α的式子為sin2α=2k2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某志愿者到某山區(qū)小學(xué)支教,為了解留守兒童的幸福感,該志愿者對某班40名學(xué)生進(jìn)行了一次幸福指數(shù)的調(diào)查問卷,并用莖葉圖表示如圖(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強(qiáng)).
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為孩子的幸福感強(qiáng)與是否是留守兒童有關(guān)?
幸福感強(qiáng)幸福感弱總計
留守兒童6915
非留守兒童18725
總計241640
(2)從15個留守兒童中按幸福感強(qiáng)弱進(jìn)行分層抽樣,共抽取5人,又在這5人中隨機(jī)抽取2人進(jìn)行家訪,求這2個學(xué)生中恰有一人幸福感強(qiáng)的概率.
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
附表:
P(K2≥k00.0500.010
k03.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果a>b>0,那么下列不等式一定成立的是( 。
A.|a|<|b|B.$\frac{1}{a}>\frac{1}$C.${(\frac{1}{2})^a}>{(\frac{1}{2})^b}$D.lna>lnb

查看答案和解析>>

同步練習(xí)冊答案