A. | cosx-sinx | B. | sinx-cosx | C. | sinx+cosx | D. | -sinx-cosx |
分析 根據(jù)題意,利用導(dǎo)數(shù)的運算法則依次計算f1(x)、f2(x)、f2(x)…的值,分析可得fn+4(x)=fn(x),即可得f2017(x)=f504×4+1(x)=f1(x),即可得答案.
解答 解:根據(jù)題意,∵f0(x)=sinx+cosx,
∴f1(x)=f0′(x)=cosx-sinx,
f2(x)=f1′(x)=-sinx-cosx,
f3(x)=-cosx+sinx,
f4(x)=sinx+cosx,
以此類推,可得出fn(x)=fn+4(x)
∴f2017(x)=f504×4+1(x)=f1(x)=cosx-sinx;
故選:A
點評 本題考查導(dǎo)數(shù)的計算,關(guān)鍵是通過依次計算函數(shù)的導(dǎo)數(shù),發(fā)現(xiàn)其導(dǎo)數(shù)變化的規(guī)律.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 2π | ||
C. | 4π | D. | 與點B'的位置有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{44}{45}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{41}{45}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{{\sqrt{2}}}{2},3}]$ | B. | $[{1,\sqrt{10}}]$ | C. | $[{\frac{{\sqrt{2}}}{2},\sqrt{10}}]$ | D. | $[{1,\frac{{\sqrt{10}}}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{22}{13}$ | C. | $\frac{3}{22}$ | D. | $\frac{13}{18}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com