.(本題滿分12分)如圖,在梯形中,,,四邊形為矩形,平面平面,.
(I)求證:平面
(II)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.

(I)證明:在梯形中,
,
,∴     

∴  
∵ 平面⊥平面,平面∩平面,平面
∴ ⊥平面               …………………6分
(II)由(I)可建立分別以直線的如圖所示空間直角坐標(biāo)系,令,則,

∴   
設(shè)為平面MAB的一個(gè)法向量,

,則,…………8分
∵ 是平面FCB的一個(gè)法向量
…10分
∵       ∴ 當(dāng)時(shí),有最小值,
當(dāng)時(shí),有最大值。  ∴  …………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間,設(shè)是三條不同的直線,是三個(gè)不同的平面,則下列命題中為假命題的是
A.若,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一點(diǎn).
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若M,N分別是CC1,AB的中點(diǎn),求證:CN //平面AB1M;
(Ⅲ)若,求二面角A-MB1-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在直三棱柱中,,點(diǎn)的中點(diǎn).
求證:(1);(2)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在底面為平行四邊形的四棱錐中, ,平面,點(diǎn)的中點(diǎn).
(1)求證:;
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、是兩條不同直線,是兩個(gè)不同平面,則下列四個(gè)命題:
①若,,則
②若,,則;
③若,,則
④若,,則.
其中正確命題的個(gè)數(shù)為( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在長方體中,分別是的中點(diǎn),
,.
(Ⅰ)求證://平面;
(Ⅱ)在線段上是否存在點(diǎn),使直線垂直,
如果存在,求線段的長,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐PABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,平面PAD⊥平面ABCD,E、F分別為PCBD的中點(diǎn).
(1)證明:EF∥平面PAD;
(2)證明:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

長方體ABCD—ABC1D1中,,則點(diǎn)到直線AC的距離是
A.3B.C.D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案