已知f(x)=ax2+bx+3a+b是偶函數(shù),其定義域?yàn)閇a-1,2a],則點(diǎn)(a,b)的軌跡為( 。
分析:先根據(jù)定義域應(yīng)關(guān)于原點(diǎn)對稱求出a的值,然后根據(jù)偶函數(shù)求出b的值,從而可知點(diǎn)(a,b)的軌跡為點(diǎn).
解答:解:∵定義域應(yīng)關(guān)于原點(diǎn)對稱,
故有a-1=-2a,
得a=
1
3

又∵f(-x)=f(x)恒成立,
即:ax2+bx+3a+b=ax2-bx+3a+b
∴b=0.
∴點(diǎn)(a,b)為(
1
3
,0)
故選A.
點(diǎn)評:本題主要考查了函數(shù)的奇偶性定義,以及定義域要關(guān)于原點(diǎn)對稱是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

例2:已知f(x)=ax2+bx+c的圖象過點(diǎn)(-1,0),是否存在常數(shù)a、b、c,使不等式x≤f(x)≤
x2+12
對一切實(shí)數(shù)x都成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,則f(2)的取值范圍是
[2,10]
[2,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2-blnx+2x(a>0,b>0)在區(qū)間(
1
2
,1)
上不單調(diào),則
3b-2
3a+2
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
①若f(x)無零點(diǎn),則g(x)>0對?x∈R成立;
②若f(x)有且只有一個(gè)零點(diǎn),則g(x)必有兩個(gè)零點(diǎn);
③若方程f(x)=0有兩個(gè)不等實(shí)根,則方程g(x)=0不可能無解
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2-3ax+a2-1(a<0),則f(3),f(-3),f(
3
2
)從小到大的順序是
f(-3)<f(3)<f(
3
2
f(-3)<f(3)<f(
3
2

查看答案和解析>>

同步練習(xí)冊答案