如果函數(shù)f(x)=-x2+2ax在區(qū)間[1,2]上是減函數(shù),那么實數(shù)a的取值范圍是
 
.如果函數(shù)f(x)=-x2+2ax與函數(shù)g(x)=
ax+1
在區(qū)間[1,2]上都是減函數(shù),那么實數(shù)a的取值范圍是
 
分析:①因為二次函數(shù)且開口向下,在對稱軸右邊為減函數(shù),只須對稱軸x=a≤1,
②因兩函數(shù)均為減函數(shù),對于y=g(x)用復(fù)合函數(shù)的單調(diào)性來求a,再與①求交集即可
解答:解:因為函數(shù)f(x)=-x2+2ax在區(qū)間[1,2]上是減函數(shù),所以對稱軸x=a≤1,即a≤1,又
因為函數(shù)f(x)=-x2+2ax與函數(shù)g(x)=
a
x+1
在區(qū)間[1,2]上都是減函數(shù),而x+1在[1,2]為增,
∴a>0,有x=a≤1且a>0得0<a≤1.
故答案為a≤1,
      0<a≤1.
點評:開口向下的二次函數(shù)在對稱軸右邊為減函數(shù),在對稱軸左邊為增函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,橫坐標、縱坐標均為整數(shù)的點稱為整點,如果函數(shù)f(x)的圖象恰好通過n(n∈N*)個整點,則稱函數(shù)f(x)為n階整點函數(shù)、有下列函數(shù):①f(x)=sin 2x;②g(x)=x3;③h(x)=((
13
)
x;④φ(x)=ln x,其中是一階整點函數(shù)的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上是減少的,那么實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)如果函數(shù)f(x)=cos(2x+φ)的圖象關(guān)于點(
3
,0)
成中心對稱,且-
π
2
<φ<
π
2
,則函數(shù)y=f(x+
π
3
)
為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)滿足:對任意實數(shù)a,b都有f(a+b)=f(a)f(b),且f(1)=2,則
f(2)
f(1)
+
f(3)
f(2)
+
f(4)
f(3)
+
f(5)
f(4)
+…+
f(2010)
f(2009)
=
4018
4018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),那么對于區(qū)間D內(nèi)的任意x1,x2,…,xn,都有
f(x1)+f(x2)+…+f(xn)
n
≤f(
x1+x2+…+xn
n
).若y=sinx在區(qū)間(0,π)上是凸函數(shù),那么在△ABC中,sinA+sinB+sinC的最大值是
3
3
2
3
3
2

查看答案和解析>>

同步練習(xí)冊答案