分析 利用不等式的解法,利用充分條件和必要條件的定義即可得到結(jié)論.
解答 解:由:$\left\{\begin{array}{l}{x+2≥10}\\{x-10≤0}\end{array}\right.$,得$\left\{\begin{array}{l}{x≥8}\\{x≤10}\end{array}\right.$,即8≤x≤10,
若¬p是¬q的必要不充分條件,
則q是p的必要不充分條件,則[8,10]?[-m,1+m],
則$\left\{\begin{array}{l}{1+m≥-m}\\{1+m≥10}\\{-m≤8}\end{array}\right.$,即$\left\{\begin{array}{l}{m≥-\frac{1}{2}}\\{m≥9}\\{m≥-8}\end{array}\right.$,
解得m≥9,
故答案為:m≥9.
點評 本題主要考查充分條件和必要條件的判斷,利用逆否命題的等價性將條件進行轉(zhuǎn)化,結(jié)合不等式之間的關(guān)系進行求解是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | . 必要不充分條件 | B. | 充分不必要條件 | ||
C. | .充要條件 | D. | . 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{7}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p真q假 | B. | p∧q為真 | C. | p,q均為假 | D. | p∨q為真 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{2}{7}$)${\;}^{\frac{1}{4}}$ | B. | ($\frac{2}{7}$)4 | C. | 5${\;}^{\frac{1}{4}}$ | D. | ($\frac{7}{2}$)${\;}^{\frac{1}{4}}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com