袋中裝有大小、質(zhì)地相同的8個小球,其中紅色小球4個,藍色和白色小球各 2個.某學(xué)生從袋中每次隨機地摸出一個小球,記下顏色后放回.規(guī)定每次摸出紅色小球記2分,摸出藍色小球記1分,摸出白色小球記0分.
(Ⅰ)求該生在4次摸球中恰有3次摸出紅色小球的概率;
(Ⅱ)求該生兩次摸球后恰好得2分的概率;
(Ⅲ)求該生兩次摸球后得分的數(shù)學(xué)期望.
解:(Ⅰ)“摸出紅色小球”,“摸出藍色小球”,“摸出白色小球”分別記為事件A,B,C.
………………1分
由題意得:. ………………3分
因每次摸球為相互獨立事件,故4次摸球中恰有3次摸出紅色小球的概率為:.  …………………………………………5分
(Ⅱ)該生兩次摸球后恰好得2分的概率
…………9分
(Ⅲ)兩次摸球得分的可能取值為0,1,2,3,4.
;
;
;

.                         ………………12分
.        ………………13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,面積為的正方形中有一個不規(guī)則的圖形,可按下面方法估計的面積:在正方形中隨機投擲個點,若個點中有個點落入中,則的面積的估計值為,假設(shè)正方形的邊長為2,的面積為1,并向正方形中隨機投擲個點,以表示落入中的點的數(shù)目.

(I)求的均值;
(II)求用以上方法估計的面積時,的面積的估計值與實際值之差在區(qū)間內(nèi)的概率.
附表:










查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校的高二(一)班男同學(xué)有45名,女同學(xué)有名,老師按照分層抽樣的方法組建了一個人的課外興趣小組.
(1)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(2)經(jīng)過一個月的學(xué)習(xí)、討論,這個興趣小組決定選出兩名同學(xué)做某項實驗,方法是先從小組里選出名同學(xué)做實驗,該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實驗,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
(3)試驗結(jié)束后,第一次做試驗的同學(xué)得到的試驗數(shù)據(jù)為,第二次做試驗的同學(xué)得到的試驗數(shù)據(jù)為,請問哪位同學(xué)的實驗更穩(wěn)定?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是 。ā 。
A.如果一事件發(fā)生的概率為十萬分之一,說明此事件不可能發(fā)生
B.如果一事件不是不可能事件,說明此事件是必然事件
C.概率的大小與不確定事件有關(guān)
D.如果一事件發(fā)生的概率為99.999%,說明此事件必然發(fā)生

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙二射擊運動員分別對一目標(biāo)射擊次,甲射中的概率為,乙射中的概率為,求:
(1)人都射中目標(biāo)的概率;
(2)人中恰有人射中目標(biāo)的概率;
(3)人至少有人射中目標(biāo)的概率;
(4)人至多有人射中目標(biāo)的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

將一顆骰子先后拋擲2次,觀察向上的點數(shù),求:
(1)兩數(shù)之和為5的概率;
(2)兩數(shù)中至少有一個奇數(shù)的概率;
(3)以第一次向上點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y的點(x,y)在圓x2+y2=15的內(nèi)部的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在n次重復(fù)進行的試驗中,事件A發(fā)生的頻率
m
n
,當(dāng)n很大時,那么P(A)與
m
n
的關(guān)系是( 。
A.P(A)≈
m
n
B.P(A)
m
n
C.P(A)
m
n
D.P(A)=
m
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一數(shù)學(xué)興趣小組利用幾何概型的相關(guān)知識作實驗計算圓周率,他們向一個邊長為1米的正方形區(qū)域均勻撒豆,測得正方形區(qū)域有豆5120顆,正方形的內(nèi)切圓區(qū)域有豆4608顆,問他們所測得的圓周率為______(小數(shù)點后保留一位數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從5張100元,3張200元,2張300元的奧運會決賽門票中任取3張,則所取3張中于至少有2張價格相同的概率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案