【題目】如圖,在多面體中,四邊形是平行四邊形,平面平面,為正三角形,,,.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)分別取,的中點(diǎn)連結(jié),,,先證,再證平面,然后可得平面,又平面,可證平面平面;
(2)先建立空間直角坐標(biāo)系,然后分別求出平面的法向量為和平面的法向量為,然后代入公式計(jì)算即可.
(1)如圖,分別取,的中點(diǎn)連結(jié),,,
可得,,
∵四邊形是平行四邊形,∴,,
又平面,平面,
∴平面,
又平面,
且平面平面,∴,
∵,∴,,
∴四邊形為平行四邊形,∴,
又為正三角形,
∴,,
在中,,,
滿(mǎn)足,∴,即,
∴,又,,
∴平面,∴平面,
∵平面,∴,
又,∴平面,
∴平面,
又平面,∴平面平面;
(2)由(1)得建立如圖所示的空間直角坐標(biāo)系,
由題意得,,,,, ,
設(shè)平面的法向量為,
,令,則,,
∴,
又,,
設(shè)平面的法向量為,
,解得,令,則,
∴,
∴,
∴平面與平面所成銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)求的值;
(Ⅱ)在函數(shù)的圖象上任意取定兩點(diǎn),,記直線(xiàn)的斜率為,求證:存在唯一,使得成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正態(tài)分布有極其廣泛的實(shí)際背景,生產(chǎn)與科學(xué)實(shí)驗(yàn)中很多隨機(jī)變量的概率分布都可以近似地用正態(tài)分布來(lái)描述.例如,同一種生物體的身長(zhǎng)、體重等指標(biāo).隨著“綠水青山就是金山銀山”的觀(guān)念不斷的深入人心,環(huán)保工作快速推進(jìn),很多地方的環(huán)境出現(xiàn)了可喜的變化.為了調(diào)查某水庫(kù)的環(huán)境保護(hù)情況,在水庫(kù)中隨機(jī)捕撈了100條魚(yú)稱(chēng)重.經(jīng)整理分析后發(fā)現(xiàn),魚(yú)的重量x(單位:kg)近似服從正態(tài)分布,如圖所示,已知.
(Ⅰ)若從水庫(kù)中隨機(jī)捕撈一條魚(yú),求魚(yú)的重量在內(nèi)的概率;
(Ⅱ)(。⿵牟稉频100條魚(yú)中隨機(jī)挑出6條魚(yú)測(cè)量體重,6條魚(yú)的重量情況如表.
重量范圍(單位:kg) | |||
條數(shù) | 1 | 3 | 2 |
為了進(jìn)一步了解魚(yú)的生理指標(biāo)情況,從6條魚(yú)中隨機(jī)選出3條,記隨機(jī)選出的3條魚(yú)中體重在內(nèi)的條數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(ⅱ)若將選剩下的94條魚(yú)稱(chēng)重做標(biāo)記后立即放生.兩周后又隨機(jī)捕撈1000條魚(yú),發(fā)現(xiàn)其中帶有標(biāo)記的有2條.為了調(diào)整生態(tài)結(jié)構(gòu),促進(jìn)種群的優(yōu)化,預(yù)備捕撈體重在內(nèi)的魚(yú)的總數(shù)的40%進(jìn)行出售,試估算水庫(kù)中魚(yú)的條數(shù)以及應(yīng)捕撈體重在內(nèi)的魚(yú)的條數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,,為的中點(diǎn),平面,.
(1)求證:平面平面;
(2)若,,且,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)為平面直角坐標(biāo)系中的一個(gè)動(dòng)點(diǎn)(其中為坐標(biāo)系原點(diǎn)),點(diǎn)到定點(diǎn)的距離比到直線(xiàn)的距離大1,動(dòng)點(diǎn)的軌跡方程為.
(1)求曲線(xiàn)的方程;
(2)若過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)相交于、兩點(diǎn).
①若,求直線(xiàn)的直線(xiàn)方程;
②分別過(guò)點(diǎn),作曲線(xiàn)的切線(xiàn)且交于點(diǎn),是否存在以為圓心,以為半徑的圓與經(jīng)過(guò)點(diǎn)且垂直于直線(xiàn)的直線(xiàn)相交于、兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,PC⊥面ABCD,直角梯形ABCD中,∠B=∠C=90°,AB=4,CD=1,PC=2,點(diǎn)M在PB上且PB=4PM,PB與平面PCD所成角為60°.
(1)求證:面:
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線(xiàn)l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T.
(I)求橢圓C的方程和點(diǎn)T的坐標(biāo);
(Ⅱ)O為坐標(biāo)原點(diǎn),與OT平行的直線(xiàn)l′與橢圓C交于不同的兩點(diǎn)A,B,直線(xiàn)l′與直線(xiàn)l交于點(diǎn)P,試判斷是否為定值,若是請(qǐng)求出定值,若不是請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com