7.如圖莖葉圖中一組數(shù)據(jù)的中位數(shù)是50.

分析 根據(jù)莖葉圖中的數(shù)據(jù),利用中位數(shù)的定義求出即可.

解答 解:莖葉圖中的數(shù)據(jù)為28,31,39,44,56,57,58,66,
它們的中位數(shù)是$\frac{44+56}{2}$=50.
故答案為:${50_{\;}}^{\;}$.

點評 本題考查了利用莖葉圖求中位數(shù)的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=tanx,x∈[0,$\frac{π}{4}$]的值域是[0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.奇函數(shù)y=x|x+a|的單調遞增區(qū)間是(-∞,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=(x2-1)sinx的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.執(zhí)行如圖所示程序框圖,若輸入a,b,i的值分別為6,4,1,則輸出a和i的值分別為( 。
A.2,4B.3,4C.2,5D.2,6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.平行四邊形ABCD中,對角線AC與BD相交于點O.已知$\overrightarrow{DP}$⊥$\overrightarrow{AC}$,且|$\overrightarrow{DP}$|=2,$\overrightarrow{DM}$=$\frac{1}{3}$$\overrightarrow{DO}$,$\overrightarrow{ON}$=$\frac{1}{3}$$\overrightarrow{OC}$.設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$.
(Ⅰ)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{MN}$;
(Ⅱ)求$\overrightarrow{DP}•\overrightarrow{DB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若兩曲線y=2tanx(0<x<$\frac{π}{2}$),y=3cosx相交于點A,過點A作AH⊥x軸于點H,并與曲線y=4sinx交于點B,則線段BH的長度是$\frac{4\sqrt{10}-4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.秦九韶算法是中國南宋時期的數(shù)學家秦九韶提出的一種多項式簡化算法,對于求一個n次多項式函數(shù)fn(x)=anxn+an-1xn-1+…+a1x+a0的具體函數(shù)值,運用常規(guī)方法計算出結果最多需要n次加法和$\frac{n(n+1)}{2}$乘法,而運用秦九韶算法由內而外逐層計算一次多項式的值的算法至多需要n次加法和n次乘法.對于計算機來說,做一次乘法運算所用的時間比做一次加法運算要長得多,所以此算法極大地縮短了CPU運算時間,因此即使在今天該算法仍具有重要意義.運用秦九韶算法計算f(x)=0.5x6+4x5-x4+3x3-5x當x=3時的值時,最先計算的是(  )
A.-5×3=-15B.0.5×3+4=5.5
C.3×33-5×3=66D.0.5×36+4×35=1336.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某城市要在占地3250畝的荒山上建造森林公園,2014年春季開始植樹100畝,以后每年春季比上一年多植樹50畝,求到哪一年春季才能將荒山全部綠化?

查看答案和解析>>

同步練習冊答案