9.已知等比數(shù)列{an}滿足a2=1,${a_3}{a_5}=6({a_4}-\frac{3}{2})$,則a6=( 。
A.3B.6C.9D.18

分析 由等比數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)與公比,由此能求出a6

解答 解:∵等比數(shù)列{an}滿足a2=1,${a_3}{a_5}=6({a_4}-\frac{3}{2})$,
∴$\left\{\begin{array}{l}{{a}_{1}q=1}\\{{a}_{1}{q}^{2}•{a}_{1}{q}^{4}=6({a}_{1}{q}^{3}-\frac{3}{2})}\end{array}\right.$,解得q2=3,
∴a6=${a}_{2}{q}^{4}$=1×32=9.
故選:C.

點(diǎn)評(píng) 本題考查等比數(shù)列中第6項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(2cos2x,1),$\overrightarrow$=$({1,m+\sqrt{3}sin2x})$,且函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$
(Ⅰ)求f(x)解析式
(Ⅱ)若x∈$[{0,\frac{π}{2}}]$時(shí),f(x)最大值為2,求m的值,并指出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若橢圓$\frac{y^2}{25}+\frac{x^2}{{25-{m^2}}}$=1與雙曲線x2-$\frac{y^2}{24}$=1的離心率互為倒數(shù),則橢圓方程為$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{24}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,矩形ABCD的邊AB=m,BC=4,PA⊥平面ABCD,PA=3,現(xiàn)有數(shù)據(jù):
①$m=\frac{3}{2}$;②m=3;③m=4;④$m=\sqrt{5}$.若在BC邊上存在點(diǎn)Q(Q不在端點(diǎn)B、C處),使PQ⊥QD,則m可以。ā 。
A.①②B.①②③C.②④D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=a(x-$\frac{1}{x}$)-blnx(a,b∈R),g(x)=x2
(1)若a=1,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,求b的值;
(2)在(1)的條件下,求證:g(x)>f(x)-2ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx-x+$\frac{1}{2}$x2-$\frac{1}{3}$ax3,f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(1)若F(x)=f(x)+b,函數(shù)F(x)在x=1處的切線方程為2x+y-1=0,求a,b的值;
(2)若f′(x)≤-x+ax恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=mx3-nx(m≠0)在x=-1時(shí)取得極值,且f(1)=-1
(1)求常數(shù)m,n的值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.請(qǐng)你用邏輯聯(lián)結(jié)詞“且”、“或”、“非”構(gòu)造三個(gè)命題,并說出它們的真假,不必證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知一個(gè)空間幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的體積是(  )
A.2B.4C.6D.12

查看答案和解析>>

同步練習(xí)冊答案