分析 (1)當(dāng)a=1時(shí),由已知得到f(x)在x=1處的導(dǎo)數(shù)為0,即可求b的值;
(2)設(shè)F(x)=g(x)-f(x)+2ln2=x2-(x-$\frac{1}{x}$)+2lnx+2ln2,求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可證明結(jié)論.
解答 解:(1)當(dāng)a=1時(shí),由已知得到f(x)在x=1處的導(dǎo)數(shù)為0.
而f'(x)=1+$\frac{1}{{x}^{2}}$-$\frac{x}$,所以f'(1)=2-b=0,從而b=2.
(2)設(shè)F(x)=g(x)-f(x)+2ln2=x2-(x-$\frac{1}{x}$)+2lnx+2ln2
F'(x)=2x-1-$\frac{1}{{x}^{2}}$+$\frac{2}{x}$=$\frac{2{x}^{3}-{x}^{2}+2x-1}{{x}^{2}}$
設(shè)w(x)=2x3-x2+2x-1,(x>0)w'(x)=6x2-2x+2=2(3x2-x+1)恒>0,即有w(x)在x>0上是增函數(shù).又因?yàn)閣(x)=(2x-1)(x2+1),
可知w($\frac{1}{2}$)=0,
則當(dāng)x∈(0,$\frac{1}{2}$)時(shí),w(x)<0;當(dāng)x∈($\frac{1}{2}$,+∞)時(shí),w(x)>0
所以當(dāng)x∈(0,$\frac{1}{2}$)時(shí),F(xiàn)(x)單調(diào)減;當(dāng)x∈($\frac{1}{2}$,+∞)時(shí),F(xiàn)(x)單調(diào)增.
所以F(x)≥F($\frac{1}{2}$)=$\frac{7}{4}$>0,
∴g(x)>f(x)-2ln2.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查不等式的證明,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0} | B. | {-1,0,1} | C. | {-1,1} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}+ln3$ | B. | 4-ln3 | C. | $\frac{9}{2}$ | D. | $\frac{11}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com