(2012•濟南二模)設(shè)a=
π
0
sinxdx
,則二項式(a
x
-
1
x
)6
展開式的常數(shù)項是( 。
分析:利用微積分基本定理求出n,利用二項展開式的通項公式求出通項,令x的指數(shù)等于0,求出常數(shù)項.
解答:解:a=
π
0
sinxdx
=-cosx|0π=2
(a
x
-
1
x
)6
=(2
x
-
1
x
)
6
展開式的通項為Tr+1=(-1)r26-rC6rx3-r
令3-r=0得r=3
故展開式的常數(shù)項是-8C63=-160
故選D.
點評:本題考查微積分基本定理、二項展開式的通項公式解決二項展開式的特定項問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟南二模)函數(shù)y=sinxsin(
π
2
+x)
的最小正周期是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟南二模)若a>b>0,則下列不等式不成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟南二模)在等差數(shù)列{an}中,a1=-2012,其前n項和為Sn,若
S12
12
-
S10
10
=2,則S2012的值等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟南二模)如圖,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
12
AP=2,D是AP的中點,E,F(xiàn),G分別為PC、PD、CB的中點,將△PCD沿CD折起,使得PD⊥平面ABCD.

(1)求證:平面PCD⊥平面PAD;
(2)求二面角G-EF-D的大。
(3)求三棱椎D-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟南二模)函數(shù)y=lg
1
|x+1|
|的大致圖象為( 。

查看答案和解析>>

同步練習(xí)冊答案