袋中有3個(gè)白球,2個(gè)紅球和若干個(gè)黑球(球的大小均相同),從中任取2個(gè)球,設(shè)每取得一個(gè)黑球得0分,每取得一個(gè)白球得1分,每取得一個(gè)紅球得2分,已知得0分的概率為
16
,則袋中黑球的個(gè)數(shù)為
4個(gè)
4個(gè)
分析:先設(shè)出袋中黑球個(gè)數(shù)為x個(gè),通過(guò)題意可判斷當(dāng)取到的兩球均為黑球時(shí),得分為0分,求出取到兩球均為黑球的情況,比上任取兩球的情況,即為的0分的概率,據(jù)此,解出x的值.
解答:解:設(shè)袋中黑球的個(gè)數(shù)為x個(gè).
從袋中任取2個(gè)球,共有Cx+52=
(x+5)(x+4)
2
種不同的取法
取道兩只黑球的情況有Cx2=
x(x-1)
2
種不同的取法
而當(dāng)取到的兩球均為黑球時(shí),得分為0分,
∴得0分的概率為
x(x-1)
2
(x+5)(x+4)
2
=
x(x-1)
(x+5)(x+4)
=
1
6

∴x=4
故答案為4個(gè)
點(diǎn)評(píng):本題主要考察了等可能性事件概率的求法,做題時(shí)注意分析何時(shí)得0分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知甲口袋中有8個(gè)大小相同的小球,其中有5個(gè)白球,3個(gè)黑球;乙口袋中有4個(gè)大小相同的小球,其中有2個(gè)白球,2 個(gè)黑球,現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡(jiǎn)單隨機(jī)抽樣)從甲、乙兩個(gè)口袋中共摸出3個(gè)小球.
(I )求從甲、乙兩個(gè)口袋中分別抽取小球的個(gè)數(shù);
(II)求從甲口袋中抽取的小球中恰有一個(gè)白球的概率;
(III)記ξ表示抽取的3個(gè)小球中黑球的個(gè)數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中有3個(gè)白球和2個(gè)黑球,從中任意摸出2個(gè)球,則至少摸出1個(gè)黑球的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中有3個(gè)白球,2個(gè)紅球共5個(gè)球.
(1)若有放回地依次取出兩個(gè)球,求取得的兩個(gè)球中至少有一個(gè)是白球的概率.
(2)若摸到白球時(shí)得1分,摸到紅球時(shí)得2分,求任意取出3個(gè)球所得總分為5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

袋中有3個(gè)白球,2個(gè)紅球共5個(gè)球.
(1)若有放回地依次取出兩個(gè)球,求取得的兩個(gè)球中至少有一個(gè)是白球的概率.
(2)若摸到白球時(shí)得1分,摸到紅球時(shí)得2分,求任意取出3個(gè)球所得總分為5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年北京市東城區(qū)宏志中學(xué)高二(下)月考數(shù)學(xué)試卷(解析版) 題型:解答題

袋中有3個(gè)白球,2個(gè)紅球共5個(gè)球.
(1)若有放回地依次取出兩個(gè)球,求取得的兩個(gè)球中至少有一個(gè)是白球的概率.
(2)若摸到白球時(shí)得1分,摸到紅球時(shí)得2分,求任意取出3個(gè)球所得總分為5的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案