在如圖所示的程序框圖中,輸入f0(x)=cosx,則輸出的是( 。
A、sinxB、-sinx
C、cosxD、-cosx
考點:程序框圖
專題:算法和程序框圖
分析:根據(jù)框圖的流程依次計算程序運行的結果,直到滿足條件i=2014,程序運行終止,根據(jù)fn(x)的值是周期性變化規(guī)律求輸出f2014(x)的值.
解答: 解:由程序框圖知:第一次運行i=0+1=1,f1(x)=f0′(x)=-sinx;
第二次運行i=1+1=2,f2(x)=-cosx;
第三次運行i=2+1=3,f3(x)=sinx;
第四次運行i=3+1=4,f4(x)=cosx;
第五次運行i=4+1=5,f5(x)=-sinx,

∴fn(x)的值是周期性變化的,且周期為4,
當i=2014時,滿足條件i=2014,程序運行終止,輸出f2014(x)=-cosx.
故選:D.
點評:本題考查了循環(huán)結構的程序框圖,根據(jù)框圖的流程依次計算程序運行的結果是解答此類問題的常用方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
a
=(3,-cos(ωx)),
b
=(sin(ωx),
3
),其中ω>0,函數(shù)f(x)=
a
b
的最小正周期為π.
(1)求f(x)的單調遞增區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c.且f(
A
2
)=
3
,a=
3
b求角A、B、C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥平面ABC,AP=AB=2
3
,AC=4,D為PC中點,E為PB上一點,且BC∥平面ADE.
(Ⅰ)證明:E為PB的中點;
(Ⅱ)若PB⊥AD,求直線AC與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若某程序框圖如圖所示,該程序運行后,輸出的x=31,則a等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設ave{a,b,c}表示實數(shù)a,b,c的平均數(shù),max{a,b,c}表示實數(shù)a,b,c的最大值.設A=ave{-
1
2
x+2,x,
1
2
x+1},M=max{-
1
2
x+2,x,
1
2
x+1},若M=3|A-1|,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各組向量中,可以作為基底的是( 。
A、
e1
=(0,0)
,
e2
=(1,3)
B、
e1
=(3,5),
e2
=(-6,-10)
C、
e1
=(-1,2),
e2
=(-2,1)
D、
e1
=(-1,2),
e2
=(-
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
(i+1)(i-1)
i
在復平面上所對應的點Z位于( 。
A、實軸上B、虛軸上
C、第一象限D、第二象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,a10=15,且a3、a4、a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=
an
2n
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
3
ax3+
1
2
bx2+(1-2a)x,a,b∈R,a≠0,
(Ⅰ)若曲線y=f(x)與x軸相切于異于原點的一點,且函數(shù)f(x)的極小值為-
4
3
a,求a,b的值;
(Ⅱ)若x0>0,且
a
x0+2
+
b
x0+1
+
1-2a
x0
=0,
    ①求證:af′(
x0
x0+1
)<0; 
    ②求證:f(x)在(0,1)上存在極值點.

查看答案和解析>>

同步練習冊答案