(1)求函數(shù)f(x)=
x-1
-
1
x+1
的定義域.
(2)求值:2
3
31.5
612
分析:(1)利用偶次根式被開(kāi)方數(shù)大于或等于0,分式的分母不等于0.
(2)根式的運(yùn)算,一般都轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪來(lái)進(jìn)行運(yùn)算.
解答:解:(1)要使函數(shù)f(x)有意義,
x-1≥0
x+1≠0
,
解之得x≥1,即函數(shù)f(x)的定義域是[1,+∞).
(2)2
3
31.5
612
=2×3
1
2
×(
3
2
)
1
3
×2
1
3
×3
1
6
=21-
1
3
+
1
3
×3
1
2
+
1
3
+
1
6
 
=2×31=6.故答案為  6.
點(diǎn)評(píng):本題考查求函數(shù)的定義域的方法,以及根式的運(yùn)算方法,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2sinx,cosx),
b
=(cosx,2cosx),函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期和最大值;
(2)求函數(shù)f(x)在區(qū)間[
π
4
,
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,(-4≤x<0)
-x+3,(x≥0)
,若f(-4)=f(0),f(-2)=-1,
(1)求函數(shù)f(x)的解析式,
(2)畫(huà)出函數(shù)f(x)的圖象,并指出函數(shù)的定義域和值域.
(3)解不等式xf(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x)=
4x+bax2+1
的導(dǎo)函數(shù)為f′(x),且f′(x),在點(diǎn)x=1處取得極值.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間(m,m+2)上是增函數(shù),求實(shí)數(shù)m所有取值的集合;
(3)當(dāng)x1,x2∈R時(shí),求f′(x1)-f′(x2)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)關(guān)于x的函數(shù)f(x)=sin2x-2acosx-1
(1)求函數(shù)f(x)的最大值g(a);
(2)試確定滿(mǎn)足g(a)=
12
的a,并對(duì)此時(shí)的a值求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R,函數(shù)f(x)=(x2+mx+m)ex
(Ⅰ)若m=-1,求函數(shù)f(x)的極值
(Ⅱ)若函數(shù)f(x)的單調(diào)遞減區(qū)間為(-4,-2),求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案