如圖,在正方體ABCD-A1B1C1D1中,若E為A1C1與B1D1的交點,F(xiàn)為DD1的中點,則直線EF與直線BC所成角的大小為________(用反三角函數(shù)值表示).


分析:設正方體ABCD-A1B1C1D1的棱長為2,以AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標系,則,設直線EF與直線BC所成角為α,則=||=,由此能求出直線EF與直線BC所成角的大小.
解答:設正方體ABCD-A1B1C1D1的棱長為2,以AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標系,
則B(1,0,0),C(1,1,0),
E(1,1,2),F(xiàn)(0,2,1),,
設直線EF與直線BC所成角為α,

=||
=
∴α=
故答案為:
點評:本題考查兩條異面直線所成角的大小,解題時要認真審題,合理地建立空間直角坐標系,利用向量法求解兩條異面直線所成角的大小.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結論,得到此三棱錐中的一個正確結論為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點,
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點P是上底面A1B1C1D1內一動點,則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習冊答案