【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且和直線相切,動(dòng)圓圓心形成的軌跡是曲線,過(guò)點(diǎn)的直線與曲線交于兩個(gè)不同的點(diǎn).

(1)求曲線的方程;

(2)在曲線上是否存在定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

【答案】(1)(2)見(jiàn)解析

【解析】

(1)由拋物線定義確定P的軌跡方程,(2)設(shè),直線的方程為,代入拋物線方程,整理得

設(shè)存在定點(diǎn),由,代入韋達(dá)定理整理得,利用即可得

(1)設(shè)動(dòng)圓圓心到直線的距離為,根據(jù)題意,

動(dòng)點(diǎn)形成的軌跡是以為焦點(diǎn),以直線為準(zhǔn)線的拋物線,

拋物線方程為.

(2)根據(jù)題意,設(shè),直線的方程為,代入拋物線方程,整理得

若設(shè)拋物線上存在定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn),設(shè),則

,同理可得

解得

在曲線上存在定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形 中,,.

(1)若的中點(diǎn),則 ______

(2)點(diǎn)在線段上運(yùn)動(dòng),則||的最小值為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的箱子中裝有大小形狀相同的5個(gè)小球,其中2個(gè)白球標(biāo)號(hào)分別為,3個(gè)紅球標(biāo)號(hào)分別為,,,現(xiàn)從箱子中隨機(jī)地一次取出兩個(gè)球.

(1)求取出的兩個(gè)球都是白球的概率;

(2)求取出的兩個(gè)球至少有一個(gè)是白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),設(shè).

(Ⅰ)若處取得極值,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若時(shí)函數(shù)有兩個(gè)不同的零點(diǎn)、.

的取值范圍;②求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在區(qū)間上任取一個(gè)數(shù)記為a,在區(qū)間上任取一個(gè)數(shù)記為b

a,,求直線的斜率為的概率;

a,,求直線的斜率為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面是菱形,.

(1)求證:;

(2)若的中點(diǎn),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn),橫坐標(biāo)不小于的動(dòng)點(diǎn)在軸上的射影為,若.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)若點(diǎn)不在直線上,并且直線與曲線相交于兩個(gè)不同點(diǎn).問(wèn)是否存在常數(shù)使得當(dāng)的值變化時(shí),直線斜率之和是一個(gè)定值.若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平面ABCD,四邊形AEFB為矩形,,,

1)求證:平面ADE

2)求平面CDF與平面AEFB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,為坐標(biāo)原點(diǎn),為橢圓上任意一點(diǎn),,分別為橢圓的左、右焦點(diǎn),且,依次成等比數(shù)列,其離心率為.過(guò)點(diǎn)的動(dòng)直線與橢圓相交于、兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)時(shí),求直線的方程;

3)在平面直角坐標(biāo)系中,若存在與點(diǎn)不同的點(diǎn),使得成立,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案