若命題:“,使等式成立”是真命題,則實(shí)數(shù)的取值范圍是

A.        B.    C.    D.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年潮州市二模理)(14分)已知函數(shù)的導(dǎo)數(shù)滿足,常數(shù)為方程的實(shí)數(shù)根.

⑴ 若函數(shù)的定義域?yàn)镮,對(duì)任意,存在,使等式=成立,

 求證:方程不存在異于的實(shí)數(shù)根;

⑵ 求證:當(dāng)時(shí),總有成立;

⑶ 對(duì)任意,若滿足,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年沈陽(yáng)二中四模)(12分) 已知函數(shù)的定義域?yàn)?I >I,導(dǎo)數(shù)滿足0<<2  且≠1,常數(shù)c1為方程的實(shí)數(shù)根,常數(shù)c2為方程的實(shí)數(shù)根.

(I)求證:當(dāng)時(shí),總有成立;

(II)若對(duì)任意,存在,使等式 成立.試問:方程有幾個(gè)實(shí)數(shù)根,并說明理由;

(Ⅲ)(理科生答文科生不答)對(duì)任意,若滿足,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省興化市高三12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知命題:“,使等式成立”是真命題.

(1)求實(shí)數(shù)m的取值集合M;

(2)設(shè)不等式的解集為N,若的必要條件,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

(Ⅰ)若 ,是否存在,有?請(qǐng)說明理由;

(Ⅱ)若(a、q為常數(shù),且aq0)對(duì)任意m存在k,有,試求a、q滿足的充要條件;

(Ⅲ)若試確定所有的p,使數(shù)列中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請(qǐng)證明.

【解析】第一問中,由,整理后,可得、,為整數(shù)不存在、,使等式成立。

(2)中當(dāng)時(shí),則

,其中是大于等于的整數(shù)

反之當(dāng)時(shí),其中是大于等于的整數(shù),則,

顯然,其中

、滿足的充要條件是,其中是大于等于的整數(shù)

(3)中設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),

結(jié)合二項(xiàng)式定理得到結(jié)論。

解(1)由,整理后,可得、,為整數(shù)不存在、,使等式成立。

(2)當(dāng)時(shí),則,其中是大于等于的整數(shù)反之當(dāng)時(shí),其中是大于等于的整數(shù),則,

顯然,其中

滿足的充要條件是,其中是大于等于的整數(shù)

(3)設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

當(dāng)時(shí),符合題意。當(dāng)為奇數(shù)時(shí),

   由,得

當(dāng)為奇數(shù)時(shí),此時(shí),一定有使上式一定成立。當(dāng)為奇數(shù)時(shí),命題都成立

 

查看答案和解析>>

同步練習(xí)冊(cè)答案