【題目】已知雙曲線x2﹣ =1,過點(diǎn)P(2,1)能否作一條直線l,與雙曲線交于A,B兩點(diǎn),且點(diǎn)P是線段AB的中點(diǎn)?
【答案】解:設(shè)點(diǎn)A(x1 , y1),點(diǎn)B(x2 , y2),P(x0 , y0),則2x12﹣y12=2 ①
2x22﹣y22=2 ②
①﹣②得
2(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,
2×2x0﹣2y0 =0,
∴8﹣2k=0,
∴k=4,
∴y﹣1=4(x﹣2),
∴直線l的方程為4x﹣y﹣7=0,
故答案為:4x﹣y﹣7=0
【解析】首先,設(shè)點(diǎn)A(x1 , y1),點(diǎn)B(x2 , y2),P(x0 , y0),得到2x12﹣y12=2 ①,2x22﹣y22=2 ②然后,①﹣②并結(jié)合有關(guān)中點(diǎn)坐標(biāo)公式求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某上市股票在30天內(nèi)每股的交易價(jià)格P(元)與時(shí)間t(天)組成有序數(shù)對(duì)(t,P),點(diǎn)(t,P)落在下圖中的兩條線段上,該股票在30天內(nèi)(包括30天)的日交易量Q(萬股)與時(shí)間t(天)的部分?jǐn)?shù)據(jù)如下表所示.
第t天 | 4 | 10 | 16 | 22 |
Q(萬股) | 36 | 30 | 24 | 18 |
(1)根據(jù)提供的圖象,寫出該種股票每股交易價(jià)格P(元)與時(shí)間t(天)所滿足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時(shí)間t(天)的一次函數(shù)關(guān)系式;
(3)在(2)的結(jié)論下,用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾日交易額最大,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】CPI 是居民消費(fèi)價(jià)格指數(shù)(consumer price index)的簡(jiǎn)稱.居民消費(fèi)價(jià)格指數(shù),是一個(gè)反映居民家庭一般所購買的消費(fèi)品價(jià)格水平變動(dòng)情況的宏觀經(jīng)濟(jì)指標(biāo).下面是根據(jù)統(tǒng)計(jì)局發(fā)布的2017年1月一7月的CPI 同比增長與環(huán)比增長漲跌幅數(shù)據(jù)繪制的折線圖.(注:2017 年2月與2016年2月相比較,叫同比;2017 年2 月與2017 年1月相比較,叫環(huán)比)根據(jù)該折線圖,則下列結(jié)論錯(cuò)誤的是( )
A. 2017 年1月一7月分別與2016年1月一7月相比較,CPI 有漲有跌
B. 2017 年1月一7月CPI 有漲有跌
C. 2017年1月一7月分別與2016年1月一7月相比較,1月CPI 漲幅最大
D. 2017 年2 月一7月CPI 漲跌波動(dòng)不大,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=4y的焦點(diǎn)為F,過點(diǎn)F且斜率為1的直線與拋物線相交于M、N兩點(diǎn),設(shè)直線l是拋物線C的切線,且l∥MN,P為l上一點(diǎn),則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線y=x3+x-2在點(diǎn)P0處的切線l1平行于直線4x-y-1=0,且點(diǎn)P0在第三象限.
(1)求P0的坐標(biāo);(2)若直線l⊥l1,且l也過切點(diǎn)P0,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)解方程4x﹣2x﹣2=0.
(2)求不等式 log2(2x+3)>log2(5x﹣6);
(3)求函數(shù)y=( ) ,x∈[0,5)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3|x|+log3|x|.
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)說明函數(shù)f(x)在(0,+∞)上的單調(diào)性,并利用單調(diào)性定義證明;
(3)若 f(2a)<28,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要測(cè)量底部不能到達(dá)的電視塔AB的高度,在C點(diǎn)測(cè)得塔頂A的仰角是45°,在D點(diǎn)測(cè)得塔頂A的仰角是30°,并測(cè)得水平面上的∠BCD=120°,CD=40m,則電視塔的高度為( )
A.10 m
B.20m
C.20 m
D.40m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) .
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,A、B、C的對(duì)邊分別為a,b,c,若 ,求△ABC面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com