【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長(zhǎng)度分別為1,2,2.若),且向量夾角的余弦值為.

(1)求的值;

(2)求直線與平面所成角的正弦值.

【答案】(1);(2).

【解析】

試題(1)以為坐標(biāo)原點(diǎn),、、分別為、軸建立空間直角坐標(biāo)系,寫出的坐標(biāo),根據(jù)空間向量夾角余弦公式列出關(guān)于的方程可求;(2)設(shè)岀平面的法向量為,根據(jù),進(jìn)而得到,從而求出,向量的坐標(biāo)可以求出,從而可根據(jù)向量夾角余弦的公式求出,從而得和平面所成角的正弦值.

試題解析:(1)依題意,以為坐標(biāo)原點(diǎn),分別為、、軸建立空間直角坐標(biāo)系

,因?yàn)?/span>,所以,從而,則由,解得(舍去)或.

(2)易得,,設(shè)平面的法向量,

,,即,且,所以,不妨取,則平面的一個(gè)法向量,又易得,故,所以直線與平面所成角的正弦值為.

考點(diǎn): 1、空間兩向量夾角余弦公式;2、利用向量求直線和平面說(shuō)成角的正弦.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線上動(dòng)點(diǎn)與定點(diǎn)的距離和它到定直線的距離的比是常數(shù),若過(guò)的動(dòng)直線與曲線相交于兩點(diǎn)

(1)說(shuō)明曲線的形狀,并寫出其標(biāo)準(zhǔn)方程;

(2)是否存在與點(diǎn)不同的定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DC⊥平面ABC,,P、Q分別為AE,AB的中點(diǎn).

(1)證明:平面.

(2)求異面直線所成角的余弦值;

(3)求平面與平面所成銳二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)

滿足,動(dòng)點(diǎn)的軌跡為.

1)求的方程;

2)過(guò)點(diǎn)作動(dòng)直線的平行線交軌跡兩點(diǎn),則是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)橢圓的左焦點(diǎn)為,左準(zhǔn)線為為橢圓上任意一點(diǎn),直線,垂足為,直線交于點(diǎn)

(1)若,且,直線的方程為.①求橢圓的方程;②是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

(2)設(shè)直線與圓交于兩點(diǎn),求證:直線均與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有人認(rèn)為在機(jī)動(dòng)車駕駛技術(shù)上,男性優(yōu)于女性.這是真的么?某社會(huì)調(diào)查機(jī)構(gòu)與交警合作隨機(jī)統(tǒng)計(jì)了經(jīng)常開(kāi)車的名駕駛員最近三個(gè)月內(nèi)是否有交通事故或交通違法事件發(fā)生,得到下面的列聯(lián)表:

合計(jì)

無(wú)

40

35

75

15

10

25

合計(jì)

55

45

100

附:.

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.706

據(jù)此表,可得

A. 認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性不足

B. 認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性超過(guò)

C. 認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性不足

D. 認(rèn)為機(jī)動(dòng)車駕駛技術(shù)與性別有關(guān)的可靠性超過(guò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線的焦點(diǎn)Fy軸上,其準(zhǔn)線與雙曲線的下準(zhǔn)線重合.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)設(shè)A(,)(0)是拋物線上一點(diǎn),且AFB是拋物線的準(zhǔn)線與y軸的交點(diǎn).過(guò)點(diǎn)A作拋物線的切線l,過(guò)點(diǎn)Bl的平行線l′,直線l′與拋物線交于點(diǎn)M,N,求△AMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的方程為,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).

(Ⅰ)求橢圓C的方程;

(Ⅱ)過(guò)動(dòng)點(diǎn)的直線交軸的負(fù)半軸于點(diǎn),交C于點(diǎn)(在第一象限),且是線段的中點(diǎn),過(guò)點(diǎn)作x軸的垂線交C于另一點(diǎn),延長(zhǎng)線交C于點(diǎn).

(i)設(shè)直線,的斜率分別為,,證明:

(ii)求直線的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,AB=2AD=2,∠DAB=60°,PA=PC=2,且平面ACP⊥平面ABCD

(Ⅰ)求證:CBPD;

(Ⅱ)求二面角C-PB-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案