【題目】已知橢圓C的方程為,離心率為,它的一個頂點恰好是拋物線的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過動點的直線交軸的負(fù)半軸于點,交C于點(在第一象限),且是線段的中點,過點作x軸的垂線交C于另一點,延長線交C于點.
(i)設(shè)直線,的斜率分別為,,證明:;
(ii)求直線的斜率的最小值.
【答案】(Ⅰ);(Ⅱ)(i)見解析;(ii)
【解析】
(Ⅰ)根據(jù)拋物線焦點坐標(biāo)求得,再利用離心率和的關(guān)系求得,進而得到橢圓方程;(Ⅱ)(i)利用為線段中點表示出點坐標(biāo),再根據(jù)橢圓對稱性得到點坐標(biāo);利用兩點連線斜率公式表示出和,從而結(jié)論可證;(ii)將直線方程與橢圓方成立聯(lián)立,利用韋達定理可用和表示出,利用同理可求得,進而利用兩點連線斜率公式寫出所求斜率,結(jié)合基本不等式求出最小值.
(Ⅰ)拋物線的焦點是
且 ,
橢圓的方程
(Ⅱ)(i)設(shè),那么
是線段的中點 ,
,
(ii)根據(jù)題意得:直線的斜率一定存在且
設(shè)直線為,則直線為
聯(lián)立,整理得:
利用韋達定理可知:
同理可得
當(dāng)且僅當(dāng)即為時,等號成立
直線斜率的最小值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式;
(Ⅱ)當(dāng)時,函數(shù)的最小值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長度分別為1,2,2.若(),且向量與夾角的余弦值為.
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為,線段上有兩個動點,且,則下列結(jié)論中正確的是( )
A.
B.平面
C.與平面所成角是
D.面積與的面積相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①離心率,②橢圓過點,③面積的最大值為,這三個條件中任選一個,補充在下面(橫線處)問題中,解決下面兩個問題.
設(shè)橢圓的左、右焦點分別為,過且斜率為的直線交橢圓于兩點,已知橢圓的短軸長為,________.
(1)求橢圓的方程;
(2)若線段的中垂線與軸交于點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)并銷售某高科技產(chǎn)品,已知每年生產(chǎn)該產(chǎn)品的固定成本是800萬元,生產(chǎn)成本e(單位;萬元)與生產(chǎn)的產(chǎn)品件數(shù)x(單位:萬件)的平方成正比;該產(chǎn)品單價p(單位:元)與生產(chǎn)的產(chǎn)品件數(shù)x滿足(b為常數(shù)),已知當(dāng)該產(chǎn)品的單價為300元時,生產(chǎn)成本是1800萬元,當(dāng)單價為320元時,生產(chǎn)成本是200萬元,且工廠生產(chǎn)的產(chǎn)品都可以銷售完.
(1)每年生產(chǎn)該產(chǎn)品多少萬件時,平均成本最低,最低為多少?
(2)若該工廠希望年利潤不低于8200萬元,則每年大約應(yīng)該生產(chǎn)多少萬件該產(chǎn)品?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點坐標(biāo)為,,過垂直于長軸的直線交橢圓于、兩點,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)過的直線與橢圓交于不同的兩點、,則的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已數(shù)列的各項均為正整數(shù),且滿足,又.
(1)求的值,猜想的通項公式并用數(shù)學(xué)歸納法證明;
(2)設(shè),求的值;
(3)設(shè),是否存在最大的整數(shù),使得對任意,均有?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com