【題目】為監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取10個(gè)零件,度量其內(nèi)徑尺寸(單位:).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的內(nèi)徑尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示某一天內(nèi)抽取的10個(gè)零件中其內(nèi)徑尺寸在之外的零件數(shù),求及X的數(shù)學(xué)期望;
(2)某天正常工作的一條生產(chǎn)線數(shù)據(jù)記錄的莖葉圖如下圖所示:
①計(jì)算這一天平均值與標(biāo)準(zhǔn)差;
②一家公司引進(jìn)了一條這種生產(chǎn)線,為了檢查這條生產(chǎn)線是否正常,用這條生產(chǎn)線試生產(chǎn)了5個(gè)零件,度量其內(nèi)徑分別為(單位:):95,103,109,112,119,試問(wèn)此條生產(chǎn)線是否需要進(jìn)一步調(diào)試,為什么?
參考數(shù)據(jù):,,
,,,
,,.
【答案】(1); (2)①;.②需要進(jìn)一步調(diào)試,理由見(jiàn)解析.
【解析】
(1)根據(jù)原則,可求得當(dāng)和時(shí)的概率,結(jié)合對(duì)立事件的概率關(guān)系即可求得;由正態(tài)分布的期望公式即可求得X的數(shù)學(xué)期望.
(2)根據(jù)莖葉圖,列出數(shù)據(jù)即可求得平均值,由方差公式先求得,再求得標(biāo)準(zhǔn)差;由正態(tài)分布的原則,計(jì)算出.觀測(cè)5個(gè)零件與該范圍關(guān)系,即可判斷是否需要進(jìn)一步調(diào)試.
(1)由題意
則
所以
所以
由題意可知
則
(2)①由莖葉圖可得10個(gè)數(shù)據(jù)為:96,96,99,99,102,102,104,104,105,113
則平均值
由參考數(shù)據(jù)可得
②需要進(jìn)一步調(diào)試,理由如下:
由①可知,若生產(chǎn)線正常工作,則服從正態(tài)分布
則
可知零件落在之內(nèi)的概率為,落在之外的概率為
而
由原則可知生產(chǎn)線異常,需進(jìn)一步調(diào)試
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,P為AB上一動(dòng)點(diǎn),交于AC于點(diǎn)D,現(xiàn)將沿PD翻折至,使平面平面PBCD.
(1)若,求棱錐的體積;
(2)若點(diǎn)P為AB的中點(diǎn),求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)若,求的單調(diào)區(qū)間;
(2)若,求的極大值;
(3)若,指出的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】李克強(qiáng)總理在2018年政府工作報(bào)告指出,要加快建設(shè)創(chuàng)新型國(guó)家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢(shì),深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競(jìng)爭(zhēng)力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號(hào)召,大力研發(fā)新產(chǎn)品,爭(zhēng)創(chuàng)世界名牌.為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(jià)(千元) | 3 | 4 | 5 | 6 | 7 | 8 |
銷量(百件) | 70 | 65 | 62 | 59 | 56 |
已知.
(1)若變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從個(gè)銷售數(shù)據(jù)中任取個(gè),求“好數(shù)據(jù)”至少個(gè)的概率.
(參考公式:線性回歸方程中,的估計(jì)值分別為,).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列的前n項(xiàng)和,滿足,則的最小值為
A. B. 3 C. 4 D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從四所高校中選2所.
(1)求甲、乙、丙三名同學(xué)都選高校的概率;
(2)若甲必選,記為甲、乙、丙三名同學(xué)中選校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)的分布列為
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
某商場(chǎng)經(jīng)銷一件該商品,采用1期付款,其利潤(rùn)為200元;分2期或3期付款,其利潤(rùn)為250元;分4期或5期付款,其利潤(rùn)為300元.表示經(jīng)銷一件該商品的利潤(rùn).
(1)求事件:“購(gòu)買該商品的3位顧客中,至少有1位采用1期付款”的概率;
(2)求的分布列
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,底面是邊長(zhǎng)為4的等邊三角形,側(cè)棱垂直于底面,,M是棱AC的中點(diǎn).
(1)求證:平面;
(2)求四棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com