14.已知b∈R,若(2+bi)(2-i)為純虛數(shù),則|1+bi|=$\sqrt{17}$.

分析 利用純虛數(shù)的定義、模的計算公式即可得出.

解答 解:(2+bi)(2-i)=4+b+(2b-2)i為純虛數(shù),
∴$\left\{\begin{array}{l}{4+b=0}\\{2b-2≠0}\end{array}\right.$,解得b=-4.
則|1+bi|=|1-4i|=$\sqrt{{1}^{2}+(-4)^{2}}$=$\sqrt{17}$.
故答案為:$\sqrt{17}$.

點評 本題考查了純虛數(shù)的定義、模的計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個空間幾何體的三視圖如圖所示,則幾何體的體積為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{7}{3}$B.$\frac{8-π}{3}$C.$\frac{8}{3}$D.$\frac{7-π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期,若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時,該數(shù)列的前2016項的和為(  )
A.672B.673C.1342D.1344

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某班級舉辦知識競賽活動,現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,制成如下頻率分布表:
(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:為每位參加決賽的選手準(zhǔn)備4道判斷題,選手對其依次口答,答對兩道就終止答題,并獲得一等獎,若題目答完仍然只答對1道,則獲得二等獎.某同學(xué)進入決賽,每道題答對的概率p的值恰好與頻率分布表中不少于80分的頻率的值相同.
(1)求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
(2)設(shè)該同學(xué)答題個數(shù)為X,求X的分布列及X的數(shù)學(xué)期望.
序號分組(分數(shù)段)頻數(shù)(人數(shù))頻率
1[60,70)80.16
2[70,80)22a
3[80,90)140.28
4[90,100)bc
合計d1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一個盒子里裝有標(biāo)號為1,2,3,4,5的5張標(biāo)簽,隨機地抽取了3張標(biāo)簽,則取出的3張標(biāo)簽的標(biāo)號的平均數(shù)是3的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.執(zhí)行如圖程序:

輸出的結(jié)果S是880.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值為4,最小值為2,且f(x0)=2,則f(x0+$\frac{π}{4}$)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a,b為實數(shù),則“ab>1”是“b>$\frac{1}{a}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案