精英家教網 > 高中數學 > 題目詳情

【題目】在平面內, ,| |=| |=2, = + ,若| |<1,則| |的取值范圍是

【答案】( ,2 ]
【解析】解:根據題意知,A、B1、P、B2構成一個矩形AB1PB2 ,
以AB1 , AB2所在直線為坐標軸建立直角坐標系,如圖所示;
設|AB1|=a,|AB2|=b,點O的坐標為(x,y),則點P的坐標為(a,b);
B1(a,0),B2(0,b),
由| |=| |=2,得 ,則 ;
∵| |<1,∴(x﹣a)2+(y﹣b)2<1,
∴4﹣y2+4﹣x2<1,
∴x2+y2>7;①
又∵(x﹣a)2+y2=4,
∴y2=4﹣(x﹣a)2≤4,
∴y2≤4,
同理x2≤4,
∴x2+y2≤8;②
由①②知7<x2+y2≤8,
∵| |= ,
<| |≤2
所以答案是:( ,2 ]

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某校高一(1)班全體男生的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖甲所示,據此解答如下問題:
(1)求該班全體男生的人數;
(2)求分數在[80,90)之間的男生人數,并計算頻率公布直方圖如圖乙中[80,90)之間的矩形的高.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)= ﹣ax,e為自然對數的底數 (Ⅰ)若函數f(x)的圖象在點(e2 , f(e2))處的切線方程為 3x+4y﹣e2=0,求實數a,b的值;
(Ⅱ)當b=1時,若存在 x1 , x2∈[e,e2],使 f(x1)≤f′(x2)+a成立,求實數a的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解答題。
(1)求函數f(x)=x2﹣2x+2.在區(qū)間[ ,3]上的最大值和最小值;
(2)已知f(x)=ax3+bx﹣4,若f(2)=6,求f(﹣2)的值
(3)計算0.0081 +(4 2+( ﹣160.75+3 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解答題。
(1)已知函數f(x)= ,判斷函數的奇偶性,并加以證明.
(2)是否存在a使f(x)= 為R上的奇函數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,既是偶函數,又在區(qū)間上單調遞減的是

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中常數.

(1)若上單調遞增,求的取值范圍;

(2)令,將函數的圖象向左平移個單位,再向上平移1個單位,得到函數的圖象.區(qū)間滿足:上至少含有30個零點.在所有滿足上述條件的中,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線的普通方程為,曲線的參數方程為為參數),以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)求曲線焦點的極坐標,其中.

查看答案和解析>>

同步練習冊答案