已知定點(diǎn)M(-1,0),N(1,0),P是橢圓
x2
4
+
y2
3
=1上動(dòng)點(diǎn),則
1
|PM|
+
4
|PN|
的最小值為( 。
A、2
B、
9
4
C、3
D、3+2
2
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由橢圓方程求出橢圓焦點(diǎn)坐標(biāo),可知M,N為橢圓的兩個(gè)焦點(diǎn),由橢圓定義得到|PM|+|PN|=2a=4,把
1
|PM|
+
4
|PN|
化為
1
4
1
|PM|
+
4
|PN|
)(|PM|+|PN|),展開后利用基本不等式求得最小值.
解答: 解:由
x2
4
+
y2
3
=1,得a2=4,b2=3,
∴c2=a2-b2=1,c=1
則M(-1,0),N(1,0)是橢圓的焦點(diǎn),
則有|PM|+|PN|=2a=4,
1
|PM|
+
4
|PN|
=
1
4
1
|PM|
+
4
|PN|
)(|PM|+|PN|)
=
1
4
(5+
|PN|
|PM|
+
4|PM|
|PN|
)≥
1
4
(5+4)=
9
4

故選:B
點(diǎn)評(píng):本題考查了橢圓的定義,考查了橢圓的簡(jiǎn)單集合性質(zhì),訓(xùn)練了利用基本不等式求最值,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lnx+k
ex
(其中k∈R),f′(x)為f(x)的導(dǎo)數(shù).
(1)求證:不論k取何值,曲線y=f(x)在點(diǎn)(e,f(e))處的切線不過點(diǎn)(e+1,0);
(2)若f′(1)=0,證明:對(duì)任意x>0,f′(x)<
e-x+1
x2+x
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2x+2
3
sinxcosx(x∈R).
(1)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,
m
=(1,sinA),
n
=(2,sinB),若
m
n
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是△ABC所在平面內(nèi)的點(diǎn),且
PA
+2
PB
+3
PC
=3
AC
,
(1)求證:點(diǎn)P在直線AB上;
(2)求△PAC與△PBC的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-sinx(x∈R)的單調(diào)增區(qū)間為( 。
A、[-
π
2
+2kπ,
π
2
+2kπ](k∈Z)
B、[
π
2
+2kπ,
2
+2kπ](k∈Z)
C、[2kπ,π+2kπ](k∈Z)
D、[-π+2kπ,2kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項(xiàng)和為Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn=an•2n-1,求{bn}的前n項(xiàng)和Tn
(理)(Ⅲ)若數(shù)列{cn}滿足cn=
1
Sn+1-1
,且{cn}前n項(xiàng)和為L(zhǎng)n,求證:Ln
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的三個(gè)頂點(diǎn)分別為A(x1,y1),B(x2,y2),C(x3,y3),若G是△ABC的重心,則G點(diǎn)坐標(biāo)為
 
,
GA
+
GB
+
GC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1+a3+a5-(a2+a4)=8,a12+a32+a52+(a22+a42)=12,則S5=( 。
A、-
3
2
B、
3
2
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2
x-1
x+1
的值域?yàn)?div id="7obo6g6" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案